30 research outputs found

    Shaping bacterial population behavior through computer-interfaced control of individual cells

    Get PDF
    This is the final version. Available from Springer Nature via the DOI in this record.Strains and data are available from the authors upon request. Custom scripts for the described setup are available as Supplementary Software.Bacteria in groups vary individually, and interact with other bacteria and the environment to produce population-level patterns of gene expression. Investigating such behavior in detail requires measuring and controlling populations at the single-cell level alongside precisely specified interactions and environmental characteristics. Here we present an automated, programmable platform that combines image-based gene expression and growth measurements with on-line optogenetic expression control for hundreds of individual Escherichia coli cells over days, in a dynamically adjustable environment. This integrated platform broadly enables experiments that bridge individual and population behaviors. We demonstrate: (i) population structuring by independent closed-loop control of gene expression in many individual cells, (ii) cell-cell variation control during antibiotic perturbation, (iii) hybrid bio-digital circuits in single cells, and freely specifiable digital communication between individual bacteria. These examples showcase the potential for real-time integration of theoretical models with measurement and control of many individual cells to investigate and engineer microbial population behavior.European Union's Seventh Frame ProgrammeAustrian Science FundAgence Nationale de la RechercheAgence Nationale de la RechercheAgence Nationale de la Recherch

    Ribosome-binding antibiotics increase bacterial longevity and growth efficiency

    Get PDF
    This is the final version. Available on open access from the National Academy of Sciences via the DOI in this recordData, Materials, and Software Availability: Phenotypic data in all figures from the main text can be downloaded from Zenodo repository available via the link https://zenodo.org/record/8334696Antibiotics, by definition, reduce bacterial growth rates in optimal culture conditions; however, the real-world environments bacteria inhabit see rapid growth punctuated by periods of low nutrient availability. How antibiotics mediate population decline during these periods is poorly understood. Bacteria cannot optimize for all environmental conditions because a growth-longevity tradeoff predicts faster growth results in faster population decline, and since bacteriostatic antibiotics slow growth, they should also mediate longevity. We quantify how antibiotics, their targets, and resistance mechanisms influence longevity using populations of Escherichia coli and, as the tradeoff predicts, populations are maintained for longer if they encounter ribosome-binding antibiotics doxycycline and erythromycin, a finding that is not observed using antibiotics with alternative cellular targets. This tradeoff also predicts resistance mechanisms that increase growth rates during antibiotic treatment could be detrimental during nutrient stresses, and indeed, we find resistance by ribosomal protection removes benefits to longevity provided by doxycycline. We therefore liken ribosomal protection to a "Trojan horse" because it provides protection from an antibiotic but, during nutrient stresses, it promotes the demise of the bacteria. Seeking mechanisms to support these observations, we show doxycycline promotes efficient metabolism and reduces the concentration of reactive oxygen species. Seeking generality, we sought another mechanism that affects longevity and we found the number of doxycycline targets, namely, the ribosomal RNA operons, mediates growth and longevity even without antibiotics. We conclude that slow growth, as observed during antibiotic treatment, can help bacteria overcome later periods of nutrient stress.Engineering and Physical Sciences Research Council (EPSRC)Biotechnology and Biological Sciences Research Council (BBSRC

    A framework for the integration of green and lean six sigma for superior sustainability performance

    Get PDF
    Evidence suggests that Lean, Six Sigma and Green approaches make a positive contribution to the economic, social and environmental (i.e. sustainability) performance of organizations. However, evidence also suggests that organizations have found their integration and implementation challenging. The purpose of this research is therefore to present a framework that methodically guides companies through a five stages and sixteen steps process to effectively integrate and implement the Green, Lean and Six Sigma approaches to improve their sustainability performance. To achieve this, a critical review of the existing literature in the subject area was conducted to build a research gap, and subsequently develop the methodological framework proposed. The paper presents the results from the application of the proposed framework in four organizations with different sizes and operating in a diverse range of industries. The results showed that the integration of Lean Six Sigma and Green helped the organizations to averagely reduce their resources consumption from 20% to 40% and minimize the cost of energy and mass streams by 7-12%. The application of the framework should be gradual, the companies should assess their weaknesses and strengths, set priorities, and identify goals for successful implementation. This paper is one of the very first researches that presents a framework to integrate Green and Lean Six Sigma at a factory level, and hence offers the potential to be expanded to multiple factories or even supply chains

    Exploring the utility of cross-laboratory RAD-sequencing datasets for phylogenetic analysis

    Get PDF
    BACKGROUND: Restriction site-Associated DNA sequencing (RAD-Seq) is widely applied to generate genome-wide sequence and genetic marker datasets. RAD-Seq has been extensively utilised, both at the population level and across species, for example in the construction of phylogenetic trees. However, the consistency of RAD-Seq data generated in different laboratories, and the potential use of cross-species orthologous RAD loci in the estimation of genetic relationships, have not been widely investigated. This study describes the use of SbfI RAD-Seq data for the estimation of evolutionary relationships amongst ten teleost fish species, using previously established phylogeny as a benchmark. RESULTS: The number of orthologous SbfI RAD loci identified decreased with increasing evolutionary distance between the species, with several thousand loci conserved across five salmonid species (divergence ~50 MY), and several hundred conserved across the more distantly related teleost species (divergence ~100–360 MY). The majority (>70%) of loci identified between the more distantly related species were genic in origin, suggesting that the bias of SbfI towards genic regions is useful for identifying distant orthologs. Interspecific single nucleotide variants at each orthologous RAD locus were identified. Evolutionary relationships estimated using concatenated sequences of interspecific variants were congruent with previously published phylogenies, even for distantly (divergence up to ~360 MY) related species. CONCLUSION: Overall, this study has demonstrated that orthologous SbfI RAD loci can be identified across closely and distantly related species. This has positive implications for the repeatability of SbfI RAD-Seq and its potential to address research questions beyond the scope of the original studies. Furthermore, the concordance in tree topologies and relationships estimated in this study with published teleost phylogenies suggests that similar meta-datasets could be utilised in the prediction of evolutionary relationships across populations and species with readily available RAD-Seq datasets, but for which relationships remain uncharacterised. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13104-015-1261-2) contains supplementary material, which is available to authorized users

    Multidrug efflux pumps:structure, function and regulation

    Get PDF
    Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this Review, we describe recent advances that have increased our understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria. Clinical and laboratory data indicate that efflux pumps function not only in the drug extrusion process but also in virulence and the adaptive responses that contribute to antimicrobial resistance during infection. The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities

    The antibiotic dosage of fastest resistance evolution: gene amplifications underpinning the inverted-U (dataset)

    Get PDF
    The article associated with this dataset is located in ORE at: http://hdl.handle.net/10871/124652This is the dataset used for the Reding et al. (2021) article "The Antibiotic Dosage of Fastest Resistance Evolution: gene amplifications underpinning the inverted-U" published in Molecular Biology and Evolution.Engineering and Physical Sciences Research Council (EPSRC)Ramón Areces Postdoctoral FellowshipMinisterio de Ciencia, Innovación y Universidades/FEDE

    Pole Age Affects Cell Size and the Timing of Cell Division in Methylobacterium extorquens AM1▿†

    No full text
    A number of recent experiments at the single-cell level have shown that genetically identical bacteria that live in homogeneous environments often show a substantial degree of phenotypic variation between cells. Often, this variation is attributed to stochastic aspects of biology—the fact that many biological processes involve small numbers of molecules and are thus inherently variable. However, not all variation between cells needs to be stochastic in nature; one deterministic process that could be important for cell variability in some bacterial species is the age of the cell poles. Working with the alphaproteobacterium Methylobacterium extorquens, we monitored individuals in clonally growing populations over several divisions and determined the pole age, cell size, and interdivision intervals of individual cells. We observed the high levels of variation in cell size and the timing of cell division that have been reported before. A substantial fraction of this variation could be explained by each cell's pole age and the pole age of its mother: cell size increased with increasing pole age, and the interval between cell divisions decreased. A theoretical model predicted that populations governed by such processes will quickly reach a stable distribution of different age and size classes. These results show that the pole age distribution in bacterial populations can contribute substantially to cellular individuality. In addition, they raise questions about functional differences between cells of different ages and the coupling of cell division to cell size
    corecore