8 research outputs found

    Cooling rate effects on paleointensity estimates in submarine basaltic glass and implications for dating young flows

    Get PDF
    Cooling rate effects on the intensity of thermoremanent magnetization (TRM) have been well documented in ceramics. In that case, laboratory cooling is generally more rapid than the initial cooling, leading to an overestimate of the paleofield by 5–10% in Thellier-type paleointensity experiments. The reverse scenario, however, has never been tested. We examine the effects of cooling rate on paleointensity estimates from rapidly quenched submarine basaltic glass (SBG) samples from 13 sites at 17°30â€Č–18°30â€ČS on the East Pacific Rise. Absolute cooling rates determined by relaxation geospeedometry at five of these sites range from ~10 to ~330°C min^-1 at the glass transition (~650°C). Over the dominant range of remanence blocking temperatures (~200–400°C), the natural cooling rates are approximately equal to or slightly slower than the laboratory cooling rates during the Thellier experiment. These results suggest that while the cooling rate effect might introduce some within-site scatter, it should not result in a systematic bias in paleointensity from SBG. Paleointensity estimates from the 15 sites range from ~29 to 59 ÎŒT, with an average standard error of ~1 ÎŒT. Comparison with models of geomagnetic field intensity variations at the site indicate the youngest group of samples is very recent (indistinguishable from present-day) and the oldest is at least 500, and probably several thousand, years old. These age estimates are consistent with available radiometric ages and geologic observations

    Magmatic Subsidence of the East Pacific Rise (EPR) at 18˚14\u27S Revealed Through Fault Restoration of Ridge Crest Bathymetry

    Get PDF
    The fault restoration technique of De Chabalier and Avouac [1994] is applied to an ultra-highresolution bathymetry data set from the East Pacific Rise (EPR) at 18140S. Fault offsets are calculated and subtracted from the original seafloor bathymetry to examine the morphology of the unfaulted seafloor surface within an area encompassing the ridge axis 400 [1] 1600 m in dimension. The restored topography reveals a gently sloping seafloor 200 m wide, which slopes 5 inward toward the spreading axis. We attribute this inward sloping seafloor to subsidence within the axial trough due to subsurface magmatic deflation. The vertical deformation field extracted from the bathymetry is used to characterize the ridge axis fault population present in the area. Median fault throws (9 m for inward-facing and 8 m for outwardfacing faults) are comparable to values measured for nearby mature abyssal hill fault populations, suggesting a genetic link. However, median fault spacings (70 and 46 m) are an order of magnitude smaller, and estimated total extensional strain is 3[1]–4[1] greater than values measured for ridge flank faults. These differences indicate the axial fault population at 18140S cannot be rafted onto the ridge flanks to form abyssal hill faults without significant modification, presumably via volcanic burial. We attribute the dense faulting observed in this area to slip on axial fissures during subsidence of the crestal region. The surface subsidence of a volcanic edifice can be modeled in terms of volume change in the magma source reservoir and volume of magma withdrawn from the reservoir. Using the relationship derived for a sill-like magma body, we estimate that the axial depression at 18140S could represent magma withdrawal associated with a small number (4–22) of the frequent dike injection and eruption events required to build the upper crust during the evolution of the trough. The subsidence volumes represented by the axial topography at 18140S are a small percentage of the underlying upper crustal sections (3–4%), suggesting that only a minor mismatch between magma recharge and withdrawal from the axial melt lens during ongoing plate separation could account for this pronounced axial depression

    Volcanic Eruptions on Mid-Ocean Ridges: New Evidence from the Superfast Spreading East Pacific Rise, 17˚-19˚S

    No full text
    Side-scan sonar, submersible observations and sampling of lava flows from the East Pacific Rise, 17_–19_S constrain the character and variability of submarine volcanic eruptions along mid-ocean ridges. Nine separate lava sequences were mapped using relative age and lithological contrasts among recovered samples. Axial lengths activated during eruptive episodes range from _1 to \u3e18 km; individual flow field areas vary from \u3c1 to \u3e19 km2. Estimated erupted volumes range from \u3c1 to \u3e200 _ 106 m3. The largest unit is the chemically uniform Animal Farm lava near 18_370S. The youngest lava is the Aldo-Kihi flow field, 17_240–340S, probably erupted in the early 1990s from a fissure system extending \u3e18 km along axis. Near 18_330S two distinct lava compositions with uniform sediment cover were recovered from lava that buries older faulted terrain. The boundary in lava composition coincides with a change in depth to the top of an axial magma lens seismic reflector, consistent with magmas from two separate reservoirs being erupted in the same event. Chemical compositions from throughout the area indicate that lavas with identical compositions can be emplaced in separate volcanic eruptions within individual segments. A comparison of our results to global data on submarine mid-ocean ridge eruptions suggests consistent dependencies of erupted volume, activated fissure lengths, and chemical heterogeneity with spreading rate, consistent with expected eruptive characteristics from ridges with contrasting thermal properties and magma reservoir depths

    Finite-State Text Processing

    No full text
    corecore