86 research outputs found

    Quantum Hall Circle

    Full text link
    We consider spin-polarized electrons in a single Landau level on a cylinder as the circumference of the cylinder goes to infinity. This gives a model of interacting electrons on a circle where the momenta of the particles are restricted and there is no kinetic energy. Quantum Hall states are exact ground states for appropriate short range interactions, and there is a gap to excitations. These states develop adiabatically from this one-dimensional quantum Hall circle to the bulk quantum Hall states and further on into the Tao-Thouless states as the circumference goes to zero. For low filling fractions a gapless state is formed which we suggest is connected to the Wigner crystal expected in the bulk.Comment: 12 pages, publishe

    The Pfaffian quantum Hall state made simple--multiple vacua and domain walls on a thin torus

    Full text link
    We analyze the Moore-Read Pfaffian state on a thin torus. The known six-fold degeneracy is realized by two inequivalent crystalline states with a four- and two-fold degeneracy respectively. The fundamental quasihole and quasiparticle excitations are domain walls between these vacua, and simple counting arguments give a Hilbert space of dimension 2n12^{n-1} for 2nk2n-k holes and kk particles at fixed positions and assign each a charge ±e/4\pm e/4. This generalizes the known properties of the hole excitations in the Pfaffian state as deduced using conformal field theory techniques. Numerical calculations using a model hamiltonian and a small number of particles supports the presence of a stable phase with degenerate vacua and quarter charged domain walls also away from the thin torus limit. A spin chain hamiltonian encodes the degenerate vacua and the various domain walls.Comment: 4 pages, 1 figure. Published, minor change

    Topological insulators with arbitrarily tunable entanglement

    Get PDF
    We elucidate how Chern and topological insulators fulfill an area law for the entanglement entropy. By explicit construction of a family of lattice Hamiltonians, we are able to demonstrate that the area law contribution can be tuned to an arbitrarily small value, but is topologically protected from vanishing exactly. We prove this by introducing novel methods to bound entanglement entropies from correlations using perturbation bounds, drawing intuition from ideas of quantum information theory. This rigorous approach is complemented by an intuitive understanding in terms of entanglement edge states. These insights have a number of important consequences: The area law has no universal component, no matter how small, and the entanglement scaling cannot be used as a faithful diagnostic of topological insulators. This holds for all Renyi entropies which uniquely determine the entanglement spectrum which is hence also non-universal. The existence of arbitrarily weakly entangled topological insulators furthermore opens up possibilities of devising correlated topological phases in which the entanglement entropy is small and which are thereby numerically tractable, specifically in tensor network approaches.Comment: 9 pages, 3 figures, final versio

    Composite symmetry protected topological order and effective models

    Get PDF
    Strongly correlated quantum many-body systems at low dimension exhibit a wealth of phenomena, ranging from features of geometric frustration to signatures of symmetry-protected topological order. In suitable descriptions of such systems, it can be helpful to resort to effective models which focus on the essential degrees of freedom of the given model. In this work, we analyze how to determine the validity of an effective model by demanding it to be in the same phase as the original model. We focus our study on one-dimensional spin-1/2 systems and explain how non-trivial symmetry protected topologically ordered (SPT) phases of an effective spin 1 model can arise depending on the couplings in the original Hamiltonian. In this analysis, tensor network methods feature in two ways: On the one hand, we make use of recent techniques for the classification of SPT phases using matrix product states in order to identify the phases in the effective model with those in the underlying physical system, employing Kuenneth's theorem for cohomology. As an intuitive paradigmatic model we exemplify the developed methodology by investigating the bi-layered delta-chain. For strong ferromagnetic inter-layer couplings, we find the system to transit into exactly the same phase as an effective spin 1 model. However, for weak but finite coupling strength, we identify a symmetry broken phase differing from this effective spin-1 description. On the other hand, we underpin our argument with a numerical analysis making use of matrix product states.Comment: 13 pages, 6 figure

    Symmetry Breaking on the Three-Dimensional Hyperkagome Lattice of Na_4Ir_3O_8

    Full text link
    We study the antiferromagnetic spin-1/2 Heisenberg model on the highly frustrated, three-dimensional, hyperkagome lattice of Na_4Ir_3O_8 using a series expansion method. We propose a valence bond crystal with a 72 site unit cell as a ground state that supports many, very low lying, singlet excitations. Low energy spinons and triplons are confined to emergent lower-dimensional motifs. Here, and for analogous kagome and pyrochlore states, we suggest finite temperature signatures, including an Ising transition, in the magnetic specific heat due to a multistep breaking of discrete symmetries.Comment: 4 pages, 3 figure

    Hierarchy wave functions--from conformal correlators to Tao-Thouless states

    Full text link
    Laughlin's wave functions, describing the fractional quantum Hall effect at filling factors ν=1/(2k+1)\nu=1/(2k+1), can be obtained as correlation functions in conformal field theory, and recently this construction was extended to Jain's composite fermion wave functions at filling factors ν=n/(2kn+1)\nu=n/(2kn+1). Here we generalize this latter construction and present ground state wave functions for all quantum Hall hierarchy states that are obtained by successive condensation of quasielectrons (as opposed to quasiholes) in the original hierarchy construction. By considering these wave functions on a cylinder, we show that they approach the exact ground states, the Tao-Thouless states, when the cylinder becomes thin. We also present wave functions for the multi-hole states, make the connection to Wen's general classification of abelian quantum Hall fluids, and discuss whether the fractional statistics of the quasiparticles can be analytically determined. Finally we discuss to what extent our wave functions can be described in the language of composite fermions.Comment: 9 page

    Topology and Interactions in a Frustrated Slab: Tuning from Weyl Semimetals to C > 1 Fractional Chern Insulators

    Full text link
    We show that, quite generically, a [111] slab of spin-orbit coupled pyrochlore lattice exhibits surface states whose constant energy curves take the shape of Fermi arcs, localized to different surfaces depending on their quasimomentum. Remarkably, these persist independently of the existence of Weyl points in the bulk. Considering interacting electrons in slabs of finite thickness, we find a plethora of known fractional Chern insulating phases, to which we add the discovery of a new higher Chern number state which is likely a generalization of the Moore-Read fermionic fractional quantum Hall state. By contrast, in the three-dimensional limit, we argue for the absence of gapped states of the flat surface band due to a topologically protected coupling of the surface to gapless states in the bulk. We comment on generalizations as well as experimental perspectives in thin slabs of pyrochlore iridates.Comment: Published. 6+4 page

    Microscopic theory of the quantum Hall hierarchy

    Full text link
    We solve the quantum Hall problem exactly in a limit and show that the ground states can be organized in a fractal pattern consistent with the Haldane-Halperin hierarchy, and with the global phase diagram. We present wave functions for a large family of states, including those of Laughlin and Jain and also for states recently observed by Pan {\it et. al.}, and show that they coincide with the exact ones in the solvable limit. We submit that they establish an adiabatic continuation of our exact results to the experimentally accessible regime, thus providing a unified approach to the hierarchy states.Comment: 4 pages, 2 figures. Publishe

    Hierarchy of fractional Chern insulators and competing compressible states

    Get PDF
    We study the phase diagram of interacting electrons in a dispersionless Chern band as a function of their filling. We find hierarchy multiplets of incompressible states at fillings \nu=1/3, 2/5, 3/7, 4/9, 5/9, 4/7, 3/5 as well as \nu=1/5,2/7. These are accounted for by an analogy to Haldane pseudopotentials extracted from an analysis of the two-particle problem. Important distinctions to standard fractional quantum Hall physics are striking: absent particle-hole symmetry in a single band, an interaction-induced single-hole dispersion appears, which perturbs and eventually destabilizes incompressible states as \nu increases. For this reason the nature of the state at \nu=2/3 is hard to pin down, while \nu=5/7,4/5 do not seem to be incompressible in our system.Comment: 5 pages with 4 figures, plus 6 pages and 8 figures of supplementary materia

    Half-Filled Lowest Landau Level on a Thin Torus

    Full text link
    We solve a model that describes an interacting electron gas in the half-filled lowest Landau level on a thin torus, with radius of the order of the magnetic length. The low energy sector consists of non-interacting, one-dimensional, neutral fermions. The ground state, which is homogeneous, is the Fermi sea obtained by filling the negative energy states and the excited states are gapless neutral excitations out of this one-dimensional sea. Although the limit considered is extreme, the solution has a striking resemblance to the composite fermion description of the bulk ν=1/2\nu=1/2 state--the ground state is homogeneous and the excitations are neutral and gapless. This suggests a one-dimensional Luttinger liquid description, with possible observable effects in transport experiments, of the bulk state where it develops continuously from the state on a thin torus as the radius increases.Comment: 4 pages, 1 figur
    corecore