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We elucidate how Chern and topological insulators fulfill an area law for the entanglement entropy. By explicit
construction of a family of lattice Hamiltonians, we are able to demonstrate that the area law contribution can
be tuned to an arbitrarily small value but is topologically protected from vanishing exactly. We prove this by
introducing novel methods to bound entanglement entropies from correlations using perturbation bounds, drawing
intuition from ideas of quantum information theory. This rigorous approach is complemented by an intuitive
understanding in terms of entanglement edge states. These insights have a number of important consequences:
The area law has no universal component, no matter how small, and the entanglement scaling cannot be used
as a faithful diagnostic of topological insulators. This holds for all Renyi entropies which uniquely determine
the entanglement spectrum, which is hence also nonuniversal. The existence of arbitrarily weakly entangled
topological insulators furthermore opens up possibilities of devising correlated topological phases in which
the entanglement entropy is small and which are thereby numerically tractable, specifically in tensor network
approaches.
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I. INTRODUCTION AND KEY RESULTS

Since the experimental discovery [1,2] and first theoretical
explanation [3–5] of the quantum Hall effect, topological
phenomena have triggered some of the most active and
intriguing research fields in physics. An important milestone
in the theoretical understanding of topological phases has
been reached with the notion of topological order [6] as a
means to distinguish phases of matter beyond the paradigm of
local order parameters associated with spontaneous symmetry
breaking [7]. In parallel, the entanglement entropy, which
measures the amount of quantum correlation between a system
and its environment as a function of the boundary “area”
L, has developed as a standard tool in quantum many-body
physics, providing important insights into properties of a
wide range of physical systems [8]. Notably, it can be used
to distinguish, sometimes even classify, different phases of
matter, thus providing insights that are valuable, e.g., in the
context of numerical simulations [9].

More recently, the notions of entanglement scaling and
topological phases have been bridged, showing that there is
a topological contribution γ to the entanglement entropy of a
bipartite system that is unique to topologically ordered phases.
This scale-invariant term has been coined topological entan-
glement entropy (TEE) and depends only on the logarithm of
the total quantum dimension of the topological phase [10–13].
Putting together these concepts, the generic scaling of the
entanglement entropy in two spatial dimensions (2D) reads

S(L) = αL − γ + O(1/L) (1)

for a suitable α � 0. However, the whole family of integer
quantum Hall states [1,3,4] has quantum dimension 1, im-
plying a vanishing TEE γ . Still, integer quantum Hall states
and their lattice translation-invariant analogs called Chern
insulators (CIs) [14] are gapped topological phases that are not
characterized by any conventional local order and cannot be

adiabatically connected to trivial insulators. In fact, according
to the definition suggested in Ref. [15], the CIs belong to the
class of topologically ordered systems.

In this work, we pose the natural and important question
of to what extent the topological nature of CI states and
topological insulators in 2D [16–18] can be inferred from
their entanglement scaling and, more generally, entanglement
spectra. Our analysis, expected to generalize to all standard
topological insulator classes [19–21] with spatial dimension
d > 1, is rooted in the following observations. The area law
stems from two qualitatively different contributions: a trivial
contribution and a topological one. The topological part is in
one-to-one correspondence with the topologically protected
edge states occurring at the boundary of a CI (Fig. 1). This
contribution may be considered a fingerprint of the nonvanish-
ing Chern number in the sense that its value will be nonzero
for any state that is adiabatically connected to a nontrivial
CI. Remarkably, however, we find that there is no nonzero
lower bound, which might have been expected in analogy with
the lowest Landau level, which is a Chern insulator enjoying
minimum fluctuations in the (guiding center) coordinates
which fail to commute, [X,Y ] = i�2

B , when projected to the
band. In contrast, the trivial part can be adiabatically tuned to
zero just as the entire entanglement can be tuned to zero for
trivial insulators in the atomic limit. In order to alter both con-
tributions simultaneously, we devise a construction of a Chern
insulator model built via “dimensional extension” [22,23] of
a topologically nontrivial one-dimensional (1D) model. We
are able to demonstrate that no lower bound can be put on α

even for a CI state and that it has no even arbitrarily small
universal component. The local correlations can be chosen
arbitrarily close to those of uncorrelated Slater determinants.
In fact, this is true for the whole family of so-called Renyi
entropies, Sp(L), each having a scaling of the form of Eq. (1).
The collection of (integer) Renyi entropies fully determines
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FIG. 1. (Color online) Sketch of our setup and the bulk-boundary
correspondence in Chern insulators. Bipartitioning the system into
distinct regions (A and B) on a torus gives rise to virtual edge states
(green) in the entanglement Hamiltonian which are close analogs of
the physical edge states (red) on a cylinder.

the entanglement spectrum [24], and our results imply that
even this more complete information does not contain truly
universal information beyond the fingerprint mentioned above.

In order to prove this we introduce rigorous methods of
upper bounding entanglement entropies in terms of correla-
tions only, using perturbation bounds on spectra of fermionic
correlation matrices and instruments from harmonic analysis.
On an intuitive level, we show that the contribution to α

depends on the steepness of the dispersion of the edge states
in a sample with fixed boundaries. This intuition is guided
by the insight that the bulk entanglement spectrum [24] is
typically closely related to the gapless excitations at the edge
of a topological state [24,25]. The possibility of arbitrarily
suppressing the area law coefficient may be useful for
the construction of representatives of correlated topological
phases like fractional Chern insulators [26–30], specifically
with tensor network methods where the prefactor of the area
law relates to the required bond dimension.

The remainder of this paper is organized as follows: in
Sec. II, we generally discuss entanglement properties of free
fermionic systems with a focus on the relation between
topological edge states and the area law coefficient of the
entanglement scaling. Building on this general analysis, a
family of Chern insulators with arbitrarily tunable entangle-
ment is constructed in Sec. III. Upper and lower bounds on
the Renyi entanglement entropies of this model family are
obtained from rigorous analytical methods introduced in this
work (for details see the Appendix) and are confirmed by
extensive numerical analysis. Finally, we present a concluding
discussion in Sec. IV.

II. ENTANGLEMENT IN FREE FERMIONIC SYSTEMS

A. Two-band fermionic systems and entanglement
Hamiltonians

The CI models we are considering are noninteracting
gapped two-band fermionic systems with no pairing terms.
For two-dimensional cubic lattices with L × L sites on a torus,
such a Hamiltonian takes the form

H =
∑
I,J

c
†
I hI,J cJ , (2)

where the fermionic modes are labeled by I = (j,k, �) for
j,k = 1, . . . ,L. Their ground states are Slater determinants

of all single-particle states below the energy gap. When
the system is divided into two subsystems A and B by
virtue of a cut in real space (Fig. 1), the reduced state
of the individual subsystems generically exhibits a nonzero
entanglement entropy. Ground states ρ of such models are
always fermionic Gaussian states. This implies that the reduced
density matrix ρA for subsystem A can be viewed as a free
fermionic thermal state with unit inverse temperature of the
isolated subsystem A, i.e.,

ρA = e−HE /tr(e−HE ), (3)

where the entanglement Hamiltonian HE is again quadratic in
the fermionic operators. For such free fermionic models the
ground state ρ is defined by the Hermitian, positive correlation
matrix C, with entries

CI,J = tr(ρc
†
I cJ ). (4)

HE is determined in terms of the truncated correlation matrix,
C(A), the submatrix of C associated with indices only in A. If
{ξj } denotes the set of eigenvalues of C(A) and {εj } denotes
the set of single-particle entanglement energies, the relation
reads, for all j [31],

εj = log (1 − ξj )ξ−1
j . (5)

B. Entanglement entropies

In momentum space, the Hamiltonians become

H =
∑

k

(f †
↑ (k),f †

↓ (k))h(k)

(
f↑(k)

f↓(k)

)
, (6)

where k = (kx,ky),

h(k) =
3∑

j=1

dj (k)σj , (7)

and σ1,σ2,σ3 are the Pauli matrices. The wave vectors take the
values kx,ky = 2πl/L ∈ (−π,π ] for l = −L/2 + 1, . . . ,L/2
(we also allow for Lx × Ly lattices). The two energy bands are
separated by ±‖d(k)‖. For a fully occupied lower band and
unoccupied upper band, the correlation matrix in momentum
space of the ground state is

C̄ =
⊕

k

1

2

(
1 −

3∑
j=1

dj (k)

‖d‖ σj

)
. (8)

Given the toroidal symmetry of the problem, when computing
the entanglement entropy, we keep the momentum space along
the ky direction but turn to real space otherwise [32,33]. The
fermionic operators are then transformed as

f�(k) =
L∑

l=1

e−ikx lcl,�(ky)/L1/2. (9)

The ground state of each decoupled Hamiltonian labeled by ky

is associated with a correlation matrix C(ky) in real space. We
allow for arbitrary Renyi entanglement entropies Sp, p � 1,
the standard von Neumann entropy being recovered in the
limit p ↓ 1. Indeed, it is known that all integer Renyi entropies
uniquely determine the entire entanglement spectrum. Hence,
our study allows us to conclude that the entanglement spectrum
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is also nonuniversal. The entanglement entropy Sp decouples
into a sum over the contributions for each ky . In this bipartition,
only submatrices of the correlation matrix with both indices
in A contribute. Denote with C(A)(ky) the submatrix of
C(ky) corresponding to sites contained in A, with eigenvalues
{ξj (C(A)(ky))}. Then, defining

hp(x) = log2[xp + (1 − x)p]/(1 − p), (10)

the expression for the Renyi entanglement entropy takes the
form

Sp(L) =
∑
ky

∑
j

hp(ξj (C(A)(ky)). (11)

C. Analogy with edge states of a cylinder

To get a physical intuition for the situation at hand, it is
helpful to consider Q = 1/2 − C. It can be interpreted as a
Hamiltonian with the same eigenstates as the original system
but with flat bands, i.e., ε− = −1/2 for all occupied states and
ε+ = 1/2 for all empty states [19,34–38]. Equation (5) implies
that the truncated flat-band Hamiltonian Q(A) = 1/2 − C(A) is
related to the entanglement Hamiltonian as

HE = 2arctanh(2Q(A)) (12)

[34,39]. It is thus clear that HE and the physical Hamiltonian H

must have similar properties regarding topologically protected
edge states: Q results from H via adiabatic deformation and is
hence topologically equivalent to the physical Hamiltonian.
HE is related to Q(A) via a monotonous mapping of its
spectrum.

The area law character of edge-mode contributions to
the entanglement entropy can be intuitively understood con-
sidering a cylinder geometry where the cut is translation
invariant in the y direction. A chiral edge state of HE is then
described by an energy dispersion εe of the momentum ky

along the cut crossing the energy gap. The number of low-lying
entanglement levels associated with that edge state grows
linearly with the length of the cut L. The quantized L wave
vectors ky are equidistant so that the number of states in the
edge-mode dispersion satisfying εe(ky) < εc grows linearly
with L for an arbitrary cutoff εc > 0. Hence, a chiral edge
mode results in a nonvanishing area law for the entanglement
entropy, i.e., Sp � αL for some α > 0. The expected α

contributed by the chiral edge mode can be made plausible
at this simple level (for a rigorous treatment, see below): If the
edge state dispersion is steep, εe will cross the gap rapidly as a
function of ky , resulting in only a small fraction of its L levels
having low energies. A steep edge dispersion hence implies
little entanglement.

III. CHERN INSULATORS WITH TUNABLE AREA LAW

A. Model building

We now construct a family of CI states with Chern number
1 in which the steepness of the edge states along with the
coefficient α of the area law can be tuned by a single parameter
μ. To this end we proceed in three steps. First, we discuss
the entanglement scaling of a well-known Dirac model for a
CI [21,23] from a viewpoint of dimensional extension. Second,
we introduce a means to tune the topological edge-state

contribution to the area law to an arbitrary value. Third,
we show how to get rid of the nontopological contribution
to the entanglement which otherwise masks the edge-state
contribution. Our analysis is inspired by the fact that 2D
CI states can be obtained by dimensional extension [22,23]
of particle-hole symmetry (PHS) preserving topologically
nontrivial 1D band structures [23,40,41]. In our case, ky ,
the momentum variable along the cut, plays the role of the
additional coordinate of the dimensional extension. At ky = 0
we define a 1D model as

h(kx,ky = 0) = sin(kx)σ2 − cos(kx)σ3 (13)

in Eq. (6). This 1D model is topologically characterized by a
quantized Zak-Berry phase [42] of π which is protected by the
PHS C = σ1K [43], where K denotes complex conjugation.
An interpolation with Chern number 1 between Eq. (13)
and the trivial 1D model h(kx,ky = ±π ) = sin(kx)σ2 + [2 −
cos(kx)]σ3 is given by the Dirac model for a CI [23], i.e.,

h(kx,ky) = − sin(ky)σ1 + sin(kx)σ2

+ [1 − cos(ky) − cos(kx)]σ3. (14)

The nature of the edge states may be understood from the
dimensional extension: The 1D model at ky = 0 supports a
single pair of zero-energy end states, while the trivial model at
ky = ±π does not have any subgap states. During the gapped
interpolation, these zero modes must hence be gapped out con-
tinuously, which gives rise to a single chiral edge mode cross-
ing the gap of the 2D model with fixed boundary conditions.

To arrive at a model with tunable entanglement entropy, we
replace the sin(ky) and cos(ky) functions in Eq. (14) by the C∞
functions sμ,cμ : (−π,π ] → R,

sμ(ky) =
{

sgn(ky)e−k−2
y −(|ky |−μ)−2+8/μ2

, |ky | < μ,

0, μ < |ky | < π,

(15)

cμ(ky) =
{

[1 − sμ(ky)2]1/2, |ky | < μ/2,

−[1 − sμ(ky)2]1/2, |ky | > μ/2,
(16)

where μ ∈ (0,π ] is a real parameter and sμ,cμ are 2π

periodically continued outside of the interval (−π,π ] to
formally define a lattice model with unit lattice constant. These
functions satisfy sμ

2 + cμ
2 = 1 and have the same behavior

under parity as sin and cos, respectively. The substitution
of sin(ky) by sμ(ky) and cos(ky) by cμ(ky) does not change
the instantaneous 1D models at ky = 0 and ky = ±π . This
modified model represents a smooth interpolation between
the same 1D models and still has Chern number 1. However,
the Hamiltonian depends on ky only in the tunable interval
(0,μ]. Following our previous line of argumentation, the
edge-state contribution to the area law coefficient α hence
becomes arbitrarily small for small μ. However, the trivial
1D model h(kx,|ky| > μ) = sin(kx)σ2 + [2 − cos(kx)]σ3 still
gives a nontopological contribution to the area law due to its
dependence on kx that gives rise to delocalized states. As a final
step, we introduce a slightly modified dimensional extension,
still with Chern number 1, to the kx-independent trivial 1D
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FIG. 2. (Color online) Band structure and Berry curvature. The top row shows the energy dispersion as a function of the transverse
momentum ky in the model defined on a cylinder serving as an analogy, and the bottom row shows the corresponding Berry curvature
distribution F for the model on the torus. From the left to right, the data are displayed for the standard Dirac model (14) and our model (17),
with μ = π,1,0.2, respectively. For small values of μ > 0, the Berry curvature is strongly peaked around ky = ±μ/2, which is necessary to
maintain a unit Chern number, C = ∫

BZ F(k)d2k/(2π ). The edge states exhibit a very steep slope around ky = ±μ/2 and a plateau of width μ

at zero energy between ky = −μ/2 and ky = μ/2.

model h̃μ(kx,|ky| > μ) = 2σ3 by defining

h̃μ(kx,ky) = sμ(ky)σ1 + 1
2 [1 + cμ(ky)] sin(kx)σ2

+ {
1 − cμ(ky) − 1

2 [1 + cμ(ky)] cos(kx)
}
σ3.

(17)

The CI model (17) is equal to the atomic insulator h0(kx,ky) =
2σ3 for |ky | > μ and is the key model for which we will
demonstrate the tunability of the entanglement entropy.

To further elucidate the properties of (17), we compare
the energy spectra on (long) cylinders as well as the Berry
curvatures for a conventional Dirac model (14) and our family
of CI Hamiltonians (17) in Fig. 2. For small values of μ,
the Berry curvature is strongly peaked around ky = ±μ/2.
The edge states exhibit a very steep slope around ky = ±μ/2
and a plateau of width μ at zero energy between ky = −μ/2
and ky = μ/2, which turns out to give the main contribution
to the entanglement entropy. However, the whole range of
low-energy states as a function of ky decreases linearly with
μ for small μ, and we hence expect the area law coefficient α

of the entanglement entropy to do so as well, as confirmed by
our numerical analysis (see Fig. 3) and in compliance with the
analytical bounds, to which we turn next.

B. Upper and lower bounds to entanglement entropies

To assess that question analytically, we introduce a versatile
tool to bound entanglement entropies, allowing us to show that
ground states of free fermionic systems for which correlations
decay sufficiently rapidly exhibit very little entanglement
entropy. We first state the general result applied to a 1D system
of length L, but it will be clear how to apply it to the above
decoupled 2D situation. If C(ky) is the correlation matrix of
a translationally invariant pure state, we say it decays with
power β > 0 whenever there exists a c > 0 such that

|C(ky)j,k| � cd(j,k)−β, (18)

where d is the distance in the lattice with periodic boundary
conditions. For each ky individually, one can then show the
validity of an area law,

Sp(ky) � ccβ, (19)

where cβ > 0 is a constant depending on β only and c is the
constant of Eq. (18): We find that β > 2 is in fact sufficient to
prove the validity of an area law in free fermionic models (for
details, see the Appendix). The proof idea is to decompose the
correlation matrix C(ky) for each ky into

C(ky) = C(AB)(ky) + M(ky), (20)

where C(AB)(ky) captures the uncorrelated situation between
A and its complement reflected by no entanglement at all.
Then, one can use Weyl’s perturbation theorem [44] to bound
the extent to which each of the eigenvalues of C(ky) may be
different from those of M(ky), a correlation matrix reflecting
a product state. From a counting of the respective eigenvalues

µ
0.01 0.1 1.

0.001

0.01

0.1

S
1
(L

)/
L

FIG. 3. (Color online) Entanglement area law manifested in the
large L limit of S1(L)/L as a function of μ on a log-log scale. For
sufficiently small μ, the numerically obtained values of S1(L)/L
are proportional to μ to an extraordinary precision, confirming our
conclusion that limL→∞ S1(L)/L → 0 as μ ↓ 0. The blue line for
0.11μ is included as a guide to the eye.
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and bounds to their magnitude, one arrives at a bound to Sp(ky)
from knowledge about the decay of correlations alone.

What remains to be seen is how one can derive the decay
behavior of Eq. (18) from the given dispersion relation of
the model. Here, an elegant tool comes into play, using the
machinery of harmonic analysis: The decay of correlations
is obtained from a suitable Fourier series of the dispersion
relation. One can derive such a decay, however, purely
from knowledge about derivatives of the dispersion relation:
c is obtained from integrals over absolute values of third
derivatives of dispersion relations. In this way, one arrives at
the result with little computation, albeit in a fully rigorous way:
It is clear from the dispersion relation of our model (17) that
these integrals over third derivatives can be made arbitrarily
small (for details, see the Appendix). Intuitively put, we hence
make use of the freedom to appropriately tune the correlation
decay in real space by altering the physical model to our desire,
while keeping the topological features intact.

Observation 1. Very low entanglement in Chern insulators.
For any α > 0 and any p � 1, there are two-band Chern
insulator models on L × L tori, L � L0, L0 chosen sufficiently
large, such that the entanglement entropy of the bisected
system satisfies

Sp(L) � αL. (21)

For this to be valid, one merely has to pick sufficiently small
μ > 0, as α will be monotonously decreasing with μ and will
approach zero. Since in the partially decoupled situation one
can lower bound the entanglement entropy of each 1D system
by a continuous function ky 	→ f (ky) for the translationally
invariant gapped models considered here, it is easy to see that
in the thermodynamic limit L → ∞ and with a concomitant
refinement in momentum space, the entanglement entropy has
to grow linearly in L, unless the ground state is obtained for a
trivial, k-independent, model with constant d. Such a state is,
however, topologically trivial and separated from any Chern
insulator by a closing of the bulk gap.

Observation 2. Nontrivial area laws in Chern insulators.
For any two-band Chern insulator model on L × L tori and
any p � 1, there exists an α > 0 and an L0 such that the
entanglement entropy of the bisected system satisfies Sp(L) �
αL for L � L0.

C. Numerical analysis

To complement the analytical considerations, we have per-
formed an extensive numerical analysis which we briefly report
here. All of our numerical results are fully consistent with the
rigorous results and also confirm that the actual entanglement
boundary scales similarly with μ as the analytical bound does
in the limit of large systems sizes. In particular, for small μ and
large L we find that S1(L)/L is indeed directly proportional
to μ to very high precision, as is illustrated in Fig. 3 for
L = 60 000 [45].

IV. CONCLUSIONS AND DISCUSSION

We have demonstrated the close correspondence between
the area law entanglement scaling of topological insulators
in two dimensions and their topologically protected edge
states. In particular, we have shown that the entanglement

entropy over a cut, while being topologically protected
from assuming the value zero, is nonuniversal and, in fact,
arbitrarily tunable. While the analysis focused on a model with
broken time-reversal symmetry and Chern number C = 1, our
construction immediately generalizes to models with arbitrary
Chern numbers and to time-reversal-symmetric Z2 topological
insulators in 2D: Models with arbitrary Chern numbers are
obtained by kx 	→ Nkx , with integer N , which directly leads to
C 	→ NC and Sp(L) 	→ NSp(L). A time-reversal-symmetric
Z2 topological insulator with tunable entanglement consists
of two time-reversed copies of our model in Eq. (17). We also
find that our analysis can be generalized to higher dimensions.

For the particular case of symmetry-protected topological
states in 1D systems, there is a finite lower bound to the
entanglement entropy. Co-occurring with our work, Ref. [46]
independently concluded that the entanglement spectrum of
Chern insulators is nonuniversal using very different means.
In our rigorous framework, this is natural as each Renyi entropy
has been explicitly proven to be nonuniversal, and taken
together, the (integer) Renyi entropies uniquely determine the
complete entanglement spectrum. It is common practice to
infer topological properties for counting the number of low-
lying “entanglement energies” as a function of the transverse
momentum and comparing this number with predictions from
conformal field theory. In our model the entanglement is
‘switched off’ at an arbitrarily chosen transverse momentum,
thus inferring the topology of the ground state in this fashion
is impossible in any finite-size numerical investigation.

Our results have notable implications for numerics in the
context of tensor-network approaches to Chern insulators
[47–49]. In particular, our finding that topological phases can
have very low entanglement is encouraging for the simulation
of interacting topological phases using entanglement-based
approaches. Although the weakly entangled topological in-
sulators introduced here have a peaked Berry curvature,
it is becoming increasingly clear that interesting strongly
correlated phases can exist far beyond the idealized Landau
level situation with a constant Berry curvature [30]. Having a
lattice model with a tunable Berry curvature while maintaining
a sizable band gap is likely to bring new insights. We hope our
results stimulate such further work.
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APPENDIX

In this Appendix, we discuss the methods used in order to
formulate the results presented in the main text. The material
presented here is not needed in order to understand the con-
clusions of the main text. Since new techniques are introduced
here, however, we present them in great detail. We also present
a figure that provides further intuition to the argument.

195120-5



J. C. BUDICH, J. EISERT, AND E. J. BERGHOLTZ PHYSICAL REVIEW B 89, 195120 (2014)

1. Upper bounds for entanglement entropies

We here introduce a method to upper bound entanglement
entropies in translationally invariant 1D free fermionic systems
of Lx sites, with Lx being even for simplicity of notation.
This argument is built upon statements linking correlations
to entanglement entropies in free bosonic systems [50] or
in general spin models, where an exponential decay of
correlations is required [51]. Here, a slow algebraic decay
is sufficient.

The basic idea is to decompose the correlation matrix
into one part of a direct sum of parts relating to A and
its complement, from which the entanglement entropy can
be computed, and a second remaining part that reflects the
quickly decaying correlations. Naive bounds on this remaining
part will not be sufficient. Weyl’s perturbation theorem [44],
however, will be the instrument that allows us to capture
the decay and the precise number of spectral values of this
remaining part. This argument is expected to be of use
also in other contexts where block-Toeplitz methods [52]
are inapplicable or too tedious. The 2Lx × 2Lx circulant
correlation matrix is denoted by C. Again, we say it decays
with power β > 0 whenever there exists a c > 1 such that

|Cj,k| � cd(j,k)−β, (A1)

where d is the distance in the lattice with periodic boundary
conditions. Of course, this is true in particular if the corre-
lations decay exponentially with the distance. For generality,
we consider arbitrary Renyi entropies Sp with p � 1, with
S1 = S being the standard von Neumann entropy. Again, as
is well known, all positive-integer Renyi entropies uniquely
specify the entire entanglement spectrum.

Theorem 1. Upper bounds to entanglement entropies.
Consider the ground state of a free fermionic translationally
invariant two-band system of even length Lx , with a filled
lower band and empty upper band, with correlations decaying
as in Eq. (A1). If β > 2, then each (Renyi) entanglement
entropy satisfies the area law Sp � ccβ for a suitable constant
cβ > 0.

Proof. The latter constant cβ does not depend on the
system size. Denote with ξ

↓
j the j th eigenvalue of a matrix

in nonincreasing order. Denote with C(AB) the submatrix of
C that is obtained from C by the pinching for which all
correlations between A and the complement B vanish. Since
the state is pure, the spectra of the submatrices associated with
A and its complement will be identical, and hence the (Renyi)
entanglement entropy can for any p � 1 be written as

Sp =
2Lx∑
j=1

hp(ξ↓
j (C(AB))) (A2)

in terms of the family of entropy functions hp : [0,1] → [0,1]
defined as

hp(x) = 1

1 − p
{log2[xp + (1 − x)p]}. (A3)

The first and key step will be a consequence of proper use of
Weyl’s perturbation theorem [44]. Since the ground state is
unique and a pure state, the spectral values are all contained

in {1,0}, that is,

ξ
↓
j (C) = 1 (A4)

for j = 1, . . . ,Lx and

ξ
↓
j (C) = 0 (A5)

for j = Lx + 1, . . . ,2Lx : This reflects the lower band being
filled and the upper being empty. The remaining part is referred
to as M , so that

C = C(AB) + M. (A6)

M reflects the decaying correlations in the ground state. We
now make use of Weyl’s perturbation theorem: We find for the
largest Lx (twice degenerate) eigenvalues of C(AB)

1 − ξ
↓
j (C(AB)) � ξ

↓
j (M), j = 1, . . . , Lx, (A7)

and for the smallest eigenvalues

ξ
↓
j (C(AB)) � ξ

↓
j−Lx

(M), j = Lx + 1, . . . , 2Lx. (A8)

That is to say, both the large eigenvalues close to 1 and the
small ones close to 0 are only slightly perturbed by the same
eigenvalues of M . This implies that, using the monotonicity
of h on [0,1/2],

Sp =
Lx∑
j=1

hp(ξ↓
j (C(AB))) +

2Lx∑
j=Lx+1

hp(ξ↓
j (C(AB)))

� 2
Lx∑
j=1

hp(ξ↓
j (M)). (A9)

We now again employ Weyl’s perturbation theorem, except
now to M: We hence reveal the structure of eigenvalues of
M , which rapidly decay in the same way as the correlation
matrix entries decay. Acknowledging that for each of the four
subblocks of M one encounters rapidly decaying correlations
and using that hp(1/2) = 1 is the maximum value of the
entropy function, one finds

Sp � 8
∞∑

j=1

hp( min(jcj−β,1/2)), (A10)

again giving rise to an upper bound by extending the sum to
Lx by 1 to ∞. We now use that

hp(cx) � max(1,p)chp(x) (A11)

for all c > 1 and all x ∈ [0,1] such that cx ∈ [0,1].What is
more, it is easy to see that

log(1 + x) � x (A12)

for x > 0. This means that

Sp � 8 max(1,p)c
∞∑

j=1

hp(j 1−β) =: ccp,β (A13)

for a suitable cp,β > 0, when β > 2, as the infinite sum then
converges for p � 1. This can easily be seen using Eq. (A12),
employing the fact that

∞∑
j=1

j−(β−1)p < ∞ (A14)

whenever (β − 1)p > 1.
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Note that the same argument is also applicable for any
number of bands and is stated for a two-band model merely
for simplicity of notation. The above proof is generally still
valid as is, with the only modification being that the prefactor
will linearly grow with the number of bands considered.

2. Harmonic analysis and correlation decay

The actual decay behavior of the correlations can here be
determined using tools of harmonic analysis [53].

Lemma 1. Fourier components [53]. Let f̄ : R → R be a
2π -periodic three-time differentiable function such that f̄ (3)

is absolutely continuous; then the Fourier coefficients will, for
all j , be bounded from above by

|fj | � c

|j |3 , c :=
∫ π

−π

|f̄ (3)(x)|dx. (A15)

The choice to express the bound in terms of third derivatives
is done for convenience only; higher derivatives would have
been applicable as well.

3. Application to thermodynamic limits of dispersion relations

These bounds can most conveniently be applied to the
situation where one considers instead of an L × L lattice
with toroidal boundary conditions an Lx × Ly lattice with
the same boundary conditions. It is easy to see that by first
considering the limit Lx → ∞ and then the limit Ly → ∞,
one can obtain a rigorous bound on limL→∞ S(L)/L for the
original L × L lattices at hand. In this way, one can, for each
ky , discuss an appropriate model in the thermodynamic, which
simplifies the argument considerably. More precisely put, this
is a consequence of the fact that there exists a γ > 0 such that
for Lx × Ly lattices, for each ky the entanglement entropy is
shown to satisfy

S(ky,Lx,Ly) � γ. (A16)

Naturally, we can separate the limits of large Lx and Ly in
order to simplify the discussion. In light of this discussion, we
define for each ky the functions C̄↑,↑(ky) : (−π,π ] → R and
C̄↓,↓(ky) : (−π,π ] → R as the continuum limits of C̄↑,↑ and
C̄↓,↓ for Lx × Ly lattices in the limit Lx → ∞. The real-space
correlation matrices are then obtained by invoking a Fourier
transform, rendering Lemma 1 on the Fourier coefficients of
2π -periodic functions applicable.

4. Discussion of Chern insulator models considered

In this section we discuss the dispersion relations C̄↑,↑(ky)
for the above model at hand stated in the main text (compare
also Fig. 1). Equipped with the above powerful tools, we
will see that we can arrive at our conclusion almost without
computation. We find that

C̄↑,↑(x,ky) = 0 (A17)

for all x ∈ (−π,π ] and μ < ky < π . For ky ∈ [−μ,μ], we
find that x 	→ C̄↑,↑(x,ky) is a C∞ function with a uniformly
bounded third derivative. Similarly, one can argue about
C̄↓,↓(x,ky) since

C̄↓,↓(x,ky) = 0 (A18)

for all x ∈ (−π,π ] and μ < ky < π . Again, for ky ∈ [−μ,μ],
the function x 	→ C̄↓,↓(x,ky) is a C∞ function with a uniformly
bounded third derivative. The off-diagonal elements of the cor-
relation matrix must decay at least as far as the main diagonal
elements, as the correlation matrix is positive semidefinite.

5. Entanglement area laws

With the tools developed, Observation 1 follows imme-
diately: Considering an Lx × Ly lattice, in the limit Lx →
∞, for values μ < ky < π , there is no contribution to the
entanglement entropy, while for 0 < |ky | < μ the contribution
is bounded from above by a constant: This is a consequence
of Theorem 1 and Lemma 1. Using the above argument on the
convergence for L × L lattices defined on the torus, we can
conclude that μ → 0, S(L)/L converges to zero. This proves
the validity of Observation 1.

In fact, an even stronger statement follows, one that is
also corroborated by the numerical analysis presented in the
main text: The convergence to zero is essentially linear in μ.
Precisely put, using the above machinery, it follows that there
is a constant c > 0 such that

lim
μ→0

1

μ
lim

L→∞
S(L)

L
� c. (A19)

Intuitively speaking, this follows from the observation that
along the ky direction, the number of contributing terms would
shrink linearly in μ, each of which is bounded from above by
a constant. With the tools developed, this is a conclusion that
can be reached with little calculation.

6. Lower bound

We finally briefly discuss Observation 2, the lower bound
to the entanglement entropy. It is clear that any continuous
nonzero function f : (−π,π ] → R+ with

f (ky) � S(ky) (A20)

will serve as a tool to show that Observation 2 is valid: Consider
the partially decoupled situation along the ky direction. Let
I ⊂ (−π,π ] be an interval in the momentum along the cut
with f (ky) > ε for a suitable ε > 0; then in the thermodynamic
limit Ly → ∞, one will encounter a contribution for the en-
tanglement entropy bounded from below by αL for a suitable
α. For the function f , several candidates are meaningful. For
example, denote with D(AB) the correlation matrix of two pairs
of two sites each belonging to the lattice immediately to the
left or the right of the cut for the periodic boundary conditions
chosen, and let D(A) be the submatrix of D(AB) of only two
sites belonging to A. Then

S(ky) � f (ky) :=
∑

j

2h(ξ↓
j (D(A))) −

∑
j

h(ξ↓
j (D(AB)))

(A21)

(the mutual information), which is always strictly positive
unless the state is a product state, and the correlation matrix
D(AB) is a continuous function of ky for the gapped models
considered.
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