Laughlin's wave functions, describing the fractional quantum Hall effect at
filling factors ν=1/(2k+1), can be obtained as correlation functions in
conformal field theory, and recently this construction was extended to Jain's
composite fermion wave functions at filling factors ν=n/(2kn+1). Here we
generalize this latter construction and present ground state wave functions for
all quantum Hall hierarchy states that are obtained by successive condensation
of quasielectrons (as opposed to quasiholes) in the original hierarchy
construction. By considering these wave functions on a cylinder, we show that
they approach the exact ground states, the Tao-Thouless states, when the
cylinder becomes thin. We also present wave functions for the multi-hole
states, make the connection to Wen's general classification of abelian quantum
Hall fluids, and discuss whether the fractional statistics of the
quasiparticles can be analytically determined. Finally we discuss to what
extent our wave functions can be described in the language of composite
fermions.Comment: 9 page