17 research outputs found

    La classification TNM en pratique

    No full text
    International audienceTherapeutic algorithm for lung cancer is depending on histology, patient's functional status and disease extent. The international TNM classification, accepted by both UICC and AJCC, is routinely used for non-small cell lung cancer management and is recommended for small cell lung cancer even though for the latter, the Veterans’ Administration classification is preferred for therapeutic decision. The aim of this article is to review the 8th TNM classification, its practical impact and the IASLC Staging Committee proposals regarding some specific clinical situations

    La classification TNM en pratique

    No full text
    Therapeutic algorithm for lung cancer is depending on histology, patient's functional status and disease extent. The international TNM classification, accepted by both UICC and AJCC, is routinely used for non-small cell lung cancer management and is recommended for small cell lung cancer even though for the latter, the Veterans’ Administration classification is preferred for therapeutic decision. The aim of this article is to review the 8th TNM classification, its practical impact and the IASLC Staging Committee proposals regarding some specific clinical situations.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Impact of Kupffer cells on high fat induced insulin resistance and liver fetuin-A expression.

    No full text
    Backgroun and aims: Hepatokines (liver secreted proteins with possible distant action) are emerging potential players in insulin resistance in type 2 diabetic patients. Here, we explore the effect of a high fat diet on the expression of fetuin-A, one of those candidate liver proteins, and its relation with liver macrophage (Kupffer cell) activation. Methods: Male mice of 5 weeks of age were fed a normal diet (ND) or a high fat diet (HFD) for 3 days, known to initiate steatosis and insulin resistance. A preventive Kupffer cell (KC) depletion was obtained by intravenous injection of clodronate loaded liposomes and compared with PBS liposomes. The mRNA and protein expression of fetuin-A was evaluated by RT-PCR, Western-blot and immunofluorescence (IF) on different insulin-sensitive tissues (liver, adipose tissue and muscle). Results: Short term HFD induced steatosis, KC activation and insulin resistance together with a significant increased expression of liver fetuin-A mRNA (1.5 fold, p<0.01). However, liver fetuin-A protein expression remained unchanged under short term HFD. This increase in fetuin-A under high fat diet was not evidenced in the peripheral insulin sensitive tissues (skeletal muscle and adipose tissue) whether at the mRNA or at the protein level. Kupffer cell depletion in this setting did not reduce hepatic steatosis but significantly ameliorated insulin sensitivity proved by clamp studies. This amelioration in insulin sensitivity in KC-depleted mice was associated with a significant decrease in fetuin-A mRNA expression (0.7 fold, p<0.01) compared to animals with KC. On immunofluorescence, fetuin-A was mostly expressed in centrilobular hepatocytes. Interestingly, while selectively depleting liver macrophages without affecting adipose tissue macrophage infiltration, intravenous clodronate injection was associated with a significant reduction in epididymal adipose tissue expansion compared to PBS injection (1.1% of body weight versus 1.6% of body weight, p<0.001). Conclusion: This study demonstrates liver fetuin-A overexpression at the initiation of HFD feeding, concurrent with hepatic steatosis and insulin resistance. Targeting KC in this setting improved insulin sensitivity and was associated with a decreased adiposity and a reduced liver fetuin-A expression suggesting that fetuin-A acts as an hepatokine with pro-adiposity and pro-insulin resistance effects

    SWAP: a novel EUV telescope for space weather

    Full text link
    The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is being developed to be part of the PROBA2 payload, an ESA technological mission to be launched in early 2008. SWAP is directly derived from the concept of the EIT telescope that we developed in the '90s for the SOHO mission. Several major innovations have been introduced in the design of the instrument in order to be compliant with the requirements of the PROBA2 mini-satellite: compactness with a new of-axis optical design, radiation resistance with a new CMOS-APS detector, a very low power electronics, an athermal opto-mechanical system, optimized onboard compression schemes combined with prioritization of collected data, autonomy with automatic triggering of observation and off-pointing procedures in case of Solar event occurrence, ... All these new features result from the low resource requirements (power, mass, telemetry) of the mini-satellite, but also take advantage of the specificities of a modern technological platform, such as quick pointing agility, new powerful on-board processor, Packetwire interface and autonomous operations. These new enhancements will greatly improve the operations of SWAP as a space weather sentinel from a low Earth orbit while the downlink capabilities are limited. This paper summarizes the conceptual design, the development and the qualification of the instrument, the autonomous operations and the expected performances for science exploitation

    SWAP: Sun watcher with a new EUV telescope on a technology demonstration platform

    Full text link
    SWAP (SWAP (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument that has been selected to fly on the PROBA-2 technology demonstration platform, a program of the European Space Agency (ESA) to be launched in 2006. SWAP is based on an off-axis degraded Ritchey Chretien telescope that will image the EUV solar corona at 19.5 nm on a specifically fabricated extreme ultraviolet (EUV) sensitivity enhanced CMOS APS detector. The optical design and the optical coatings are derived from the Extreme Ultraviolet Imaging Telescope (EIT) operating on-board SOHO since 1995. It has been adapted for a single wavelength telescope with off-axis optics. It allows to use smaller optics and filters, with simple internal baffles avoiding external protruding parts. The superpolished optics will receive a multilayer coating that provides spectral selection centred on 19.5 nm and EUV reflectivity in normal incidence. This compact design is specifically adapted for accommodation on PROBA-2, where mass and envelope requirements are very stringent The SWAP PROBA-2 program will be an opportunity to demonstrate this new optical concept, while it will also validate space remote sensing with APS detectors, as well as on-board image processing capabilities. On the science outcomes, SWAP will provide solar corona images in the Fe XII line on a baselined 2-min cadence. Observations with this specific wavelength allow detecting phenomena, such as solar flares or 'EIT-waves', associated with the early phase of coronal mass ejections. The SWAP data will complement the observations provided by SOHO-EIT, and STEREO-SECCHI

    MAGRITTE: an instrument suite for the solar atmospheric imaging assembly (AIA) aboard the Solar Dynamics Observatory

    Full text link
    The Solar Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory will characterize the dynamical evolution of the solar plasma from the chromosphere to the corona, and will follow the connection of plasma dynamics with magnetic activity throughout the solar atmosphere. The AIA consists of 7 high-resolution imaging telescopes in the following spectral bandpasses: 1215Ã…. Ly-a, 304 Ã… He II, 629 Ã… OV, 465 Ã… Ne VII, 195 Ã… Fe XII (includes Fe XXIV), 284 Ã… Fe XV, and 335 Ã… Fe XVI. The telescopes are grouped by instrumental approach: the MAGRITTE Filtergraphs (R. MAGRITTE, famous 20th Century Belgian Surrealistic Artist), five multilayer EUV channels with bandpasses ranging from 195 to 1216 Ã…, and the SPECTRE Spectroheliograph with one soft-EUV channel at OV 629 Ã…. They will be simultaneously operated with a 10-second imaging cadence. These two instruments, the electronic boxes and two redundant Guide Telescopes (GT) constitute the AIA suite. They will be mounted and coaligned on a dedicated common optical bench. The GTs will provide pointing jitter information to the whole SHARPP assembly. This paper presents the selected technologies, the different challenges, the trade-offs to be made in phase A, and the model philosophy. From a scientific viewpoint, the unique combination high temporal and spatial resolutions with the simultaneous multi-channel capability will allow MAGRITTE / SPECTRE to explore new domains in the dynamics of the solar atmosphere, in particular the fast small-scale phenomena. We show how the spectral channels of the different instruments were derived to fulfill the AIA scientific objectives, and we outline how this imager array will address key science issues, like the transition region and coronal waves or flare precursors, in coordination with other SDO experiments. We finally describe the real-time solar monitoring products that will be made available for space-weather forecasting applications

    The Solar Orbiter EUI instrument: The Extreme Ultraviolet Imager

    Full text link
    Context. The Extreme Ultraviolet Imager (EUI) is part of the remote sensing instrument package of the ESA/NASA Solar Orbiter mission that will explore the inner heliosphere and observe the Sun from vantage points close to the Sun and out of the ecliptic. Solar Orbiter will advance the "connection science" between solar activity and the heliosphere. Aims: With EUI we aim to improve our understanding of the structure and dynamics of the solar atmosphere, globally as well as at high resolution, and from high solar latitude perspectives. Methods: The EUI consists of three telescopes, the Full Sun Imager and two High Resolution Imagers, which are optimised to image in Lyman-α and EUV (17.4 nm, 30.4 nm) to provide a coverage from chromosphere up to corona. The EUI is designed to cope with the strong constraints imposed by the Solar Orbiter mission characteristics. Limited telemetry availability is compensated by state-of-the-art image compression, onboard image processing, and event selection. The imposed power limitations and potentially harsh radiation environment necessitate the use of novel CMOS sensors. As the unobstructed field of view of the telescopes needs to protrude through the spacecraft's heat shield, the apertures have been kept as small as possible, without compromising optical performance. This led to a systematic effort to optimise the throughput of every optical element and the reduction of noise levels in the sensor. Results: In this paper we review the design of the two elements of the EUI instrument: the Optical Bench System and the Common Electronic Box. Particular attention is also given to the onboard software, the intended operations, the ground software, and the foreseen data products. Conclusions: The EUI will bring unique science opportunities thanks to its specific design, its viewpoint, and to the planned synergies with the other Solar Orbiter instruments. In particular, we highlight science opportunities brought by the out-of-ecliptic vantage point of the solar poles, the high-resolution imaging of the high chromosphere and corona, and the connection to the outer corona as observed by coronagraphs
    corecore