421 research outputs found

    Ferromagnetic insulator-based superconducting junctions as sensitive electron thermometers

    Get PDF
    We present an exhaustive theoretical analysis of charge and thermoelectric transport in a normal metal-ferromagnetic insulator-superconductor (NFIS) junction, and explore the possibility of its use as a sensitive thermometer. We investigated the transfer functions and the intrinsic noise performance for different measurement configurations. A common feature of all configurations is that the best temperature noise performance is obtained in the non-linear temperature regime for a structure based on an europium chalcogenide ferromagnetic insulator in contact with a superconducting Al film structure. For an open-circuit configuration, although the maximal intrinsic temperature sensitivity can achieve 1010nKHz−1/2^{-1/2}, a realistic amplifying chain will reduce the sensitivity up to 1010μ\muKHz−1/2^{-1/2}. To overcome this limitation we propose a measurement scheme in a closed-circuit configuration based on state-of-art SQUID detection technology in an inductive setup. In such a case we show that temperature noise can be as low as 3535nKHz−1/2^{-1/2}. We also discuss a temperature-to-frequency converter where the obtained thermo-voltage developed over a Josephson junction operated in the dissipative regime is converted into a high-frequency signal. We predict that the structure can generate frequencies up to ∼120\sim 120GHz, and transfer functions up to 200200GHz/K at around ∼1\sim 1K. If operated as electron thermometer, the device may provide temperature noise lower than 3535nKHz−1/2^{-1/2} thereby being potentially attractive for radiation sensing applications.Comment: 11 pages, 10 color figure

    Huge thermoelectric effects in ferromagnet-superconductor junctions in the presence of a spin-splitting field

    Get PDF
    We show that a huge thermoelectric effect can be observed by contacting a superconductor whose density of states is spin-split by a Zeeman field with a ferromagnet with a non-zero polarization. The resulting thermopower exceeds kB/ek_B/e by a large factor, and the thermoelectric figure of merit ZTZT can far exceed unity, leading to heat engine efficiencies close to the Carnot limit. We also show that spin-polarized currents can be generated in the superconductor by applying a temperature bias.Comment: 5 pages, 4 figure

    Majorana bound states in hybrid 2D Josephson junctions with ferromagnetic insulators

    Full text link
    We consider a Josephson junction consisting of superconductor/ferromagnetic insulator (S/FI) bilayers as electrodes which proximizes a nearby 2D electron gas. By starting from a generic Josephson hybrid planar setup we present an exhaustive analysis of the the interplay between the superconducting and magnetic proximity effects and the conditions under which the structure undergoes transitions to a non-trivial topological phase. We address the 2D bound state problem using a general transfer matrix approach that reduces the problem to an effective 1D Hamiltonian. This allows for straightforward study of topological properties in different symmetry classes. As an example we consider a narrow channel coupled with multiple ferromagnetic superconducting fingers, and discuss how the Majorana bound states can be spatially controlled by tuning the superconducting phases. Following our approach we also show the energy spectrum, the free energy and finally the multiterminal Josephson current of the setup.Comment: 8 pages; 5 figure

    Local density of states in superconductor-strong ferromagnet structures

    Full text link
    We study the dependence of the local density of states (LDOS) on coordinates for a superconductor-ferromagnet (S/F) bilayer and a S/F/S structure assuming that the exchange energy h in the ferromagnet is sufficiently large: >>1,% h\tau >>1, where τ\tau is the elastic relaxation time. This limit cannot be described by the Usadel equation and we solve the more general Eilenberger equation. We demonstrate that, in the main approximation in the parameter (hτ)−1% (h\tau)^{-1}, the proximity effect does not lead to a modification of the LDOS in the S/F system and a non-trivial dependence on coordinates shows up in next orders in (hτ)−1.(h\tau) ^{-1}. In the S/F/S sandwich the correction to the LDOS is nonzero in the main approximation and depends on the phase difference between the superconductors. We also calculate the superconducting critical temperature TcT_{c} for the bilayered system and show that it does not depend on the exchange energy of the ferromagnet in the limit of large h and a thick F layer.Comment: 9 pages, 5 figure

    Theory of Spin Hall Magnetoresistance from a Microscopic Perspective

    Full text link
    We present a theory of the spin Hall magnetoresistance of metals in contact with magnetic insulators. We express the spin-mixing conductances, which govern the phenomenology of the effect, in terms of the microscopic parameters of the interface and the spin-spin correlation functions of the local moments on the surface of the magnetic insulator. The magnetic field and temperature dependence of the spin-mixing conductances leads to a rich behaviour of the resistance due to an interplay between the Hanle effect and spin mixing at the interface. Our theory provides a useful tool for understanding the experiments on heavy metals in contact with magnetic insulators of different kinds, and it predicts striking behaviours of magnetoresistance.Comment: 8 pages, four figure

    Josephson current in superconductor-ferromagnet structures with a nonhomogeneous magnetization

    Full text link
    We calculate the dc Josephson current IJI_J for two types of superconductor-ferromagnet (S/F) Josephson junctions. The junction of the first type is a S/F/S junction. On the basis of the Eilenberger equation, the Josephson current is calculated for an arbitrary impurity concentration. If hτ≪1% h\tau\ll1 the expression for the Josephson critical current IcI_c is reduced to that which can be obtained from the Usadel equation (hh is the exchange energy, τ\tau is the momentum relaxation time). In the opposite limit hτ≫1h\tau\gg1 the superconducting condensate oscillates with period % v_F/h and penetrates into the F region over distances of the order of the mean free path ll. For this kind of junctions we also calculate IJI_J in the case when the F layer presents a nonhomogeneous (spiral) magnetic structure with the period 2π/Q2\pi /Q. It is shown that for not too low temperatures, the π\pi-state which occurs in the case of a homogeneous magnetization (Q=0) may disappear even at small values of QQ. In this nonhomogeneous case, the superconducting condensate has a nonzero triplet component and can penetrate into the F layer over a long distance of the order of ξT=\xi_{T}=% \sqrt{D/2\pi T}. The junction of the second type consists of two S/F bilayers separated by a thin insulating film. It is shown that the critical Josephson current IcI_{c} depends on the relative orientation of the effective exchange field hh of the bilayers. In the case of an antiparallel orientation, IcI_{c} increases with increasing hh. We establish also that in the F film deposited on a superconductor, the Meissner current created by the internal magnetic field may be both diamagnetic or paramagnetic.Comment: 13 pages, 11 figures. To be published in Phys. Rev.

    Supercurrent and Andreev bound state dynamics in superconducting quantum point contacts under microwave irradiation

    Get PDF
    We present here an extensive theoretical analysis of the supercurrent of a superconducting point contact of arbitrary transparency in the presence of a microwave field. Our study is mainly based on two different approaches: a two-level model that describes the dynamics of the Andreev bound states in these systems and a fully microscopic method based on the Keldysh-Green function technique. This combination provides both a deep insight into the physics of irradiated Josephson junctions and quantitative predictions for arbitrary range of parameters. The main predictions of our analysis are: (i) for weak fields and low temperatures, the microwaves can induce transitions between the Andreev states leading to a large suppression of the supercurrent at certain values of the phase, (ii) at strong fields, the current-phase relation is strongly distorted and the corresponding critical current does not follow a simple Bessel-function-like behavior, and (iii) at finite temperature, the microwave field can enhance the critical current by means of transitions connecting the continuum of states outside the gap region and the Andreev states inside the gap. Our study is of relevance for a large variety of superconducting weak links as well as for the proposals of using the Andreev bound states of a point contact for quantum computing applications.Comment: 16 pages, 11 figures, submitted to Phys. Rev.
    • …
    corecore