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We present an exhaustive theoretical analysis of charge and thermoelectric transport in a normal-metal–
ferromagnetic-insulator–superconductor junction and explore the possibility of its use as a sensitive
thermometer. We investigate the transfer functions and the intrinsic noise performance for different
measurement configurations. A common feature of all configurations is that the best temperature-noise
performance is obtained in the nonlinear temperature regime for a structure based on an Europium
chalcogenide ferromagnetic insulator in contact with a superconducting Al film structure. For an open-
circuit configuration, although the maximal intrinsic temperature sensitivity can achieve 10 nKHz−1=2, a
realistic amplifying chain will reduce the sensitivity up to 10 μKHz−1=2. To overcome this limitation, we
propose a measurement scheme in a closed-circuit configuration based on state-of-the-art superconducting-
quantum-interference-device detection technology in an inductive setup. In such a case, we show that
temperature-noise can be as low as 35 nKHz−1=2. We also discuss a temperature-to-frequency converter
where the obtained thermovoltage developed over a Josephson junction operated in the dissipative regime
is converted into a high-frequency signal. We predict that the structure can generate frequencies up to
approximately 120 GHz and transfer functions up to 200 GHz=K at around 1 K. If operated as an electron
thermometer, the device may provide temperature-noise lower than 35 nKHz−1=2 thereby being potentially
attractive for radiation-sensing applications.
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I. INTRODUCTION

Recent theories have shown that the spin-splitting
induced in a superconductor (S) placed in contact with a
ferromagnetic insulator (FI) can be exploited in different
kinds of spin caloritronic devices such as heat valves [1,2]
or thermoelectric elements [3–6]. They can be used as
building blocks in phase-coherent thermoelectric transis-
tors [7] and for the creation of magnetic fields induced by a
temperature gradient in Josephson junctions (JJs) due to
the thermophase effect [8]. Normal-metal–ferromagnetic-
insulator–superconductor (N-FI-S) junctions have been
also proposed for efficient electron cooling [9] of the
normal metal N [10]. The possible applications of super-
conductor-ferromagnetic structures for thermoelectrics has
been also highlighted in a recent review article [11].
In the present work, we theoretically analyze charge and

thermoelectric transport in a prototype structure based on
the FI-S building block and explore its application as an
ultrasensitive electron thermometer [12–19] and eventually
as a temperature-to-frequency converter. Our system con-
sists of a N-FI-S junction denoted here as the TE, which is

connected via the superconducting wires S1 to a generic
load element, as shown in Fig. 1. A temperature difference
localized between the N and S sides of the TE induces a
thermoelectric signal [4]. We consider three different
configurations of the load resistance RL ¼ ∞ (open cir-
cuit), RL ¼ 0 (closed circuit), and finite load RL ¼ RJJ
where we close the system over a generic Josephson
element in the dissipative regime with shunting resistance
RJJ. Depending on the configuration, the device will
operate in different regimes: (i) Seebeck regime, where a
Seebeck thermovoltage (V) is generated across the TE
element at open-circuit, and (ii) Peltier regime, where the
gradient of the temperature generates a circulating thermo-
current that can be probed by an inductive measurement
for closed circuit. Here we explore both regimes, which
includes an estimate of the intrinsic noise and the best
expected temperature sensitivity with state-of-the-art tech-
nology for signal detection. We discuss the advantages and
drawbacks of the different configurations and show that
operated within the nonlinear regime, the intrinsic noise of
the device is reduced. In particular, our numerical results
show that the noise performance is mainly determined
by the junction differential resistance Rd, which can be
drastically reduced beyond the linear-response regime with
respect to the temperature. We finally discuss how the
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generated thermovoltage can induce an ac-Josephson effect
with a supercurrent oscillating at a frequency ν ¼ jVj=Φ0

[20], where Φ0 ≃ 2.067 × 10−15 Wb is the flux quantum.
The frequency ν can be measured with great accuracy
providing accurate and fast information about temperature
difference across the TE.
The paper is organized as follows: In Sec. II we briefly

present the general formalism and the expressions for the
electric current flowing through the N-FI-S junction and
the noise as a function of all the parameters involved in the
system. With the help of this expression, we analyze in
Sec. II A the electric and thermoelectric response of the TE in
the nonlinear-response regime. In particular, we show the
impact of the exchange field as well as the role of the barrier
polarization on the charge current. In Sec. II Bwe discuss the
different measurement configurations of the device analyz-
ing the effect of the load resistance RL over the thermoelec-
trical properties of TE recalling the results for the linear
regime in Sec. II C. The evaluation of the intrinsic noise
properties of the N-FI-S junction is done both for the linear
and nonlinear regimes. Assuming a realistic device based on
europium sulfide (EuS) as a FI and superconducting alumi-
num (Al) operating at low temperatures, we discuss the
open-circuit and closed-circuit configurations, respectively,
in Secs. III and IV. In those sections, we also discuss the
temperature-noise performance taking into account the most
simple measurement scheme with actual state-of-the-art
technologies. Finally, in Sec. V, we discuss the temperature-
to-frequency conversion scheme where the thermovoltage
developed across the N-FI-S junction is converted into a
high-frequency signal by a Josephson element driven into
the dissipative regime. The full temperature-to-frequency
conversion capability of the N-FI-S junction is analyzed,
investigating as well the temperature-noise performance.
We summarize our results in Sec. VI.

II. MODEL

It is instructive to start with the description of the N-FI-S
building block. The interaction between the spin of the
conducting electrons in S and the localized magnetic
moments in a FI lead to an effective exchange interaction
in S that decays over the superconducting coherence length
ξ0 [21]. We assume that the S layer is thinner than ξ0, so
that the exchange field (hexc) induced in S by the FI is
spatially homogenous. In such a case, the superconductor
density of the states (DOS) is given by the sum of the
densities for spin-up (↑) and spin-down (↓) quasiparticles,

N↑;↓ðEÞ ¼
1

2

����Re
�

Eþ iΓ� hexcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEþ iΓ� hexcÞ2 − Δ2

p
�����: ð1Þ

Here, ΔðTS; hexcÞ is the pairing potential that depends both
on temperature TS in S and hexc, and it is computed self-
consistently in a standard way [22] from the gap equation

ln

�
Δ0

Δ

�
¼

Z
ℏωD

0

dE
fþðEÞ þ f−ðEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 þ Δ2
p ; ð2Þ

where f�ðEÞ¼
n
1þ exp

h� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2þΔ2

p ∓ hexc
	
=kBTS

io
−1
,

ωD is the Debye frequency of the superconductor, Δ0 is the
zero-temperature and zero-exchange field superconducting
pairing potential, and kB is the Boltzmann constant.
Furthermore, Γ accounts for broadening, and for an ideal
superconductor Γ → 0þ [23].
We are interested in the current through the N-FI-S

junction, which in the tunneling limit considered here is
given by [4]

ITE ¼
1

eRT

Z
∞

−∞
dE½NþþPN−�½fNðV;TNÞ−fSðTSÞ�: ð3Þ

Here, RT is the normal-state resistance of the tunneling
junction and N� ¼ ðN↑ � N↓Þ. Notice that in the tunneling
limit, the Andreev reflection is negligibly small, and, hence,
no superconducting proximity effect in N takes place. We
assume thermalization on both the S andN layers neglecting
any deviation of the distribution functions from their
equilibrium form [24]: fSðTSÞ ¼ ½1þ expðE=kBTSÞ�−1
and fNðV;TNÞ¼ f1þ exp½ðEþ eVÞ=kBTN �g−1. Here,TN is
the temperature in theN layer, and−e is the electron charge.
The role of the FI layer is twofold: it acts as a spin filter with
polarization [25] P ¼ ðG↑ −G↓Þ=ðG↑ þ G↓Þ and causes
the spin splitting of the DOS in the S layer due to the
exchange coupling between the localizedmagneticmoments
of the FI and the conducting electrons of S [21,26,27]. These
two features have been demonstrated in several experiments
[28–33]. Notice that according to Eq. (3), even in the absence
of a voltage bias across the junction, a finite current ITE
can flow provided TN ≠ TS, as demonstrated in Ref. [4].

FIG. 1. General scheme of the device based on a N-FI-S
junction shown in the enlargement as stacked layers of different
materials. TS and TN denote the temperature in S and N,
respectively, ITE is the thermocurrent circulating in the circuit,
and V is the thermovoltage developed across the TE. S1 is a
superconductor contacted to both ends of the TE which contains a
load with resistance RL. The load is intended to be an open-circuit
RL → ∞, a dissipationless closed-circuit RL ¼ 0, or in the form
of a generic Josephson element operated in the dissipative regime
in order to convert the thermovoltage V into radiation at the
Josephson frequency.
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A. Electric and thermoelectric response of the TE

Before analyzing the role of a temperature bias across the
TE, we determine the current-voltage characteristics (IVCs)
and differential conductance G ¼ dITE=dV of the N-FI-S
junction. We set a low temperature, TN ¼ TS ¼ 0.01Tc,
where Tc ¼ Δ0=ð1.764kBÞ is the critical temperature of the
superconductor.
The results obtained from Eq. (3) are summarized in

Fig. 2. Figures 2(a) and 2(b) show the IVC and G,
respectively, for a polarization of the barrier P ¼ 50%
and different values of the spin-splitting exchange field
hexc. In Fig. 2(a), one clearly sees the deviation of the IVCs
from those of a metal-insulator-superconductor (N-I-S)
junction. For finite values of hexc, there is a sizeable subgap
current [see Fig. 2(a)] as a consequence of the spin splitting
of the DOS in the S electrode. This splitting manifests itself
also in the differential conductanceG [see Fig. 2(b)], where
the coherent peaks, usually appearing at V ¼ �Δ=e, are
now split in four peaks appearing at V ¼ ð�Δ� hexcÞ=e.
The asymmetry in the height of the coherent peaks stems
from the spin polarization P of the FI barrier [see Figs. 2(c)
and 2(d)] where we set hexc ¼ 0.4Δ0, and the curves are
calculated for different values of P. Therefore, from IVCs
one can estimate both the polarization of the barrier and
the spin splitting induced in S [28].

We now assume a finite-temperature difference between
the electrodes [34] δT ¼ TS − TN and recalculate the IVCs
from Eq. (3) for hexc ¼ 0.4Δ0 and P ¼ 0.9. The results
are shown in Figs. 3(a) and 3(b), where we keep one of
the electrodes at temperature 0.01Tc and change the other
electrode temperature. The curves in Fig. 3 reveal two main
properties of the IVC. First, the IVC strongly depends on
the amplitude of the temperature difference δT: the larger
the temperature difference, the larger is the current flow
at low voltages. In the case that the S electrode is heated
[see Fig. 3(a)], this trend is limited by the reduced critical
temperature T�

c < Tc of the superconductor originating
from the presence of a finite hexc which suppresses the
ΔðTS; hexcÞ calculated self-consistently. When TS → T�

c,
the TE is driven into the normal state with an Ohmic
characteristic [the red curve in Fig. 3(a)].
Second, there is another interesting feature of the IVCs:

they strongly depend on the sign of δT. For the same value
of jδTj, the current at V ¼ 0 is larger when the N electrode
is colder than the S one, i.e., when δT > 0. In other words,
the thermoelectric effect in the TE strongly depends on the
temperature difference. This feature was not investigated
in previous works [3,4] in which only the linear-response
regime was discussed.

B. Measurement configurations

To use the TE element as a thermometer, we need to
extract from the thermoelectrical signal the temperature
gradient present across the TE junction. In order to do so,
we need to close the TE circuit over a generic load element
modeled with a load resistance RL (see Fig. 1). In such a
case, the voltage V developed across the TE for a given δT
is the solution of the following nonlinear integral equation
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FIG. 2. Characterization of the TE for TS ¼ TN. (a) Current vs
voltage (ITE-V) characteristics of the TE element calculated
at TS ¼ TN ¼ 0.1Tc, P ¼ 0.5 and for a few values of hexc.
(b) Differential conductance vs voltage (G-V) characteristics of
TE calculated for the same parameters as in panel (a). (c) ITE-V
and (d) G-V characteristics of TE calculated at TS ¼TN ¼ 0.1Tc,
hexc ¼ 0.4Δ0, and for a few values of P. Δ0 ¼ 1.764kBTc is
the zero-temperature, zero-exchange-field superconducting gap,
Tc denotes the critical temperature, and RT is the normal-state
resistance of the TE.
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FIG. 3. Characterization of the TE for TS ≠ TN. (a) ITE-V
characteristic of TE calculated for several values of TS (see top
legend) at TN ¼ 0.01Tc, P ¼ 0.9, and hexc ¼ 0.4Δ0. (b) The
same as in panel (a) calculated for several TN values at
TS ¼ 0.01Tc. Dashed lines in panels (a) and (b) represent the
current (IJJ) flowing through the Josephson element when it is
operated in the resistive regime, IJJ ¼ −V=RJJ.
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ITEðV; TS; TN; hexc; PÞ þ
V
RL

¼ 0; ð4Þ

where ITE is defined in Eq. (3). The solution to the above
equation is given by the point in which the dashed line
(with slope proportional to 1=RL) in Figs. 3(a) and 3(b)
intersects the IVCs.
For a Seebeck-like measurement, one needs to maximize

the thermovoltage opening the circuit, i.e., RL → ∞ and
ITE ¼ 0. For a Peltier-like measurement, one needs to
maximize the current closing the circuit with a super-
conducting loop, i.e., RL ¼ 0 and, consequently, V ¼ 0. In
the case of temperature-to-frequency conversion that we
discuss later, one needs to include a Josephson element that
operates in the dissipative regime with a load resistance
RL ¼ RJJ, which is the total shunting resistance of the
Josephson element.
Independent of the chosen configuration, we assume to

connect the TE to the detector with two superconducting
arms S1. In particular, we assume to place a tunnel barrier
between S and S1 to isolate the S element thereby ensuring
its description as a thermally homogeneous superconductor
with a spin-split DOS. We neglect here any influence of S1
arms such that the current through the TE is described by
Eq. (3). Superconductors S and S1 are Josephson coupled
through the barrier so that no additional voltage drop will
occur. Furthermore, we also assume the NS1 junction to be
a clean metallic contact, thereby contributing negligibly to
the total resistance of the system, and, for simplicity, we
disregard the proximity effect induced into the N layer by
the nearby contacted superconductor S1 [22].

C. Linear-response regime

In the linear-response regime, i.e., when the voltage V
and temperature difference δT ≪ T ≡ ðTS þ TNÞ=2 across
the N-FI-S junction are small, Eq. (4) reads [3,4]

ITE ≈ IlinTE ¼ σV þ Pα
δT
T

; ð5Þ

where

σ ¼ 1

RT

Z
∞

−∞
dE

Nþ
4kBT cosh2ð E

2kBT
Þ ð6Þ

is the electric conductance, and α is the thermoelectric
Seebeck coefficient [4] defined as

α ¼ 1

eRT

Z
∞

−∞
dE

EN−
4kBT cosh2ð E

2kBT
Þ ; ð7Þ

which in the linear regime is connected to the Peltier
coefficient Π ¼ αT by Onsager symmetry. Substituting
Eq. (5) in Eq. (4) and solving with respect to the thermo-
voltage across the TE element, one finds

V lin ≃−Pα RL

RLσ þ 1

δT
T

; ð8Þ

which is valid in the linear-response regime assuming a
generic load resistance RL. We see immediately that the
thermovoltage directly measures the temperature gradient
in the TE. Furthermore, for fixed load resistance, the
achievable thermovoltage V increases with the polarization
P. In an open-circuit configuration (RL → ∞ and ITE ¼ 0),
the TE thermovoltage is maximal being

V lin ≃−Pα
σ

δT
T

: ð9Þ

For the closed circuit (RL ¼ 0 and V ¼ 0) instead, the
thermocurrent is maximal being

IlinTE ≈ Pα
δT
T

: ð10Þ

Obviously, we see that in the linear regime the open-circuit
thermovoltage V lin is directly related to the closed-circuit
thermocurrent, Ilin ¼ σV lin. In particular, the dependence
of the conversion efficiency on the polarization P and the
temperature gradient are the same. This simple picture
drastically changes if one goes beyond the linear-response
regime, i.e., δT ∼ T. We see below that the nonlinear
regime is essential in order to optimize the sensitivity
for thermometry applications [9].

D. Intrinsic noise of the TE element

We now address the zero-frequency noise performance
of the N-FI-S junction. In this case, the main source of
noise is the current noise (SI) generated in the TE that is
described by generalizing the expression derived in
Ref. [35] in the presence of a ferromagnetic tunneling
barrier:

SI ¼
2

RT

Z
∞

−∞
dE½Nþ þ PN−�MðE;V; TN; TSÞ; ð11Þ

where

M ¼ fNðV; TNÞ½1 − fSðTSÞ� þ fSðTSÞ½1 − fNðV; TNÞ�;
ð12Þ

and the bias V is given by the solution of Eq. (4). We note
that the previous formula describes both thermal, i.e.,
eV ≪ kBTN , kBTS, and shot noise, i.e., kBTN , kBTS≪ eV,
and holds in the tunneling regime.
The previous expression simplifies in the linear-response

regime discussed before where we can neglect any term
OðδTÞ in Eq. (11) finding the thermal noise
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SlinI ¼ 4

RT

Z
∞

−∞
dE½Nþ þ PN−�fNðTÞ½1 − fSðTÞ�; ð13Þ

which may be expressed as

SlinI ¼ 4kBTσ; ð14Þ

where σ is the TE electric conductance of Eq. (6). In the
open-circuit configuration, it is more convenient to write
the voltage-noise spectral density

SlinV ¼ 4kBT=σ: ð15Þ

Below we show that in the nonlinear regime one can
approximate Eqs. (14) and (15) by substituting σ by 1=Rd,
where Rd is the TE differential resistance.

III. TEMPERATURE-TO-VOLTAGECONVERSION

When the TE is in an open-circuit configuration
(RL → ∞), one can realize a temperature-to-voltage con-
version scheme. In such case, no charge current flows
through the TE,

ITEðV0; TS; TN; hexc; PÞ ¼ 0: ð16Þ

Then, a voltage V0 develops across the TE for δT ≠ 0. The
value of V0 can be obtained from the solution of Eq. (16).
The results are shown in the two upper panels of Fig. 4.
Specifically, Fig. 4(a) shows the dependence of V0 on TS
for different values of hexc, P ¼ 0.9, and TN ¼ 0.01Tc. The
increase of TS from the minimal temperature TN leads first
to an enhancement of jV0j. A further increase of TS leads to
the suppression of the superconducting energy gap and a
corresponding suppression of V0. The voltage V0 vanishes
when superconductivity is fully suppressed for TS → T�

c.
We note that V0 reaches zero continuously, owing to
the fact that we choose values of hexc for which the
superconducting normal-state transition is of the second
order [36].
A different temperature behavior of V0 is obtained when

S is kept at TS ¼ 0.01Tc and TN is varied, as shown in
Fig. 4(b). In particular, besides the obvious change of sign,
V0 grows monotonically by increasing TN until it reaches
an asymptotic value. It is important to stress that the curves
V0ðTNÞ depend strongly on the polarization P of the barrier
[see Fig. 4(b)]. In particular, the larger P, the larger is
the thermovoltage V0ðTNÞ developed across the TE. By
contrast, the V0ðTSÞ amplitude turns out to be almost
unaffected by the value of P.
The different behaviors as a function of δT allow one to

reconstruct both the amplitude and direction of the thermal
gradient in the TE element. This further information can be
eventually exploited to reconstruct the spatial position of a
heating event, thereby opening interesting possibilities to
build detectorlike devices.

An useful figure of merit to estimate the performance of
the TE is the temperature-to-voltage transfer function,
τV ¼ ∂V=∂T. The absolute value of this quantity is shown
in Fig. 4(c) for δT > 0 and in Fig. 4(d) for δT < 0. We
normalize it to the natural unit Δ0=eTc. In Fig. 4(d), we
show the case of barrier polarization selectivity P ¼ 1,
which corresponds to the case with a maximal possible
transfer function at given hexc.
In order to show the impact of the broadening parameter,

we display in Fig. 5 the same quantities as in Fig. 4 but
calculated for fixed hexc ¼ 0.3Δ0, P ¼ 0.9, and for differ-
ent values of Γ ranging from 10−6Δ0 to 10−2Δ0 [37–39].
The overall qualitative behavior and the order of magnitude
of the effect are the same for all these values. From a
quantitative point of view, the temperature-to-voltage con-
version turns out to be less effective the larger the value
of Γ. Throughout the paper, we assume Γ ¼ 10−4Δ0, which
is the typical value for conventional Al-based supercon-
ducting junctions [9,37].

A. Noise-performance analysis for the
open-circuit configuration

We now focus our analysis on the noise performance
of the temperature-to-voltage conversion with the N-FI-S
junction. We need to convert it to a voltage-noise assu-
ming that load resistance RL → ∞. This means that the
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voltage-noise spectral density (SV) generated across the TE
is [40]

SVðV0; TS; TN; hexc; PÞ ¼ SIR2
d; ð17Þ

where the Rd ¼ ∂V0=∂ITE is the differential resistance
of the TE, and the bias V0 is given by the solution
of Eq. (16).
In Figs. 6(a) and 6(b), the square root of noise spectral

density (
ffiffiffiffiffiffi
SV

p
) is displayed for a TE element with a barrier

characterized by a realistic value of polarization P ¼ 0.98.
This spin-filter efficiency is representative for EuO or
EuS FI barriers [41], and we assume a superconductor
with Tc ¼ 3 K which will be implementable with ultrathin
Al films [29–32].
We find that for δT > 0, the minimal noise value is

obtained in the nonlinear regime TN ≪ TS ≲ Tc where
the voltage noise can be as low as approximately
600 fVHz−1=2 and is 2 orders of magnitude lower than
the equilibrium case δT=T ≪ 1, where T ¼ ðTS þ TNÞ=2
is the average temperature. For δT < 0, the noise perfor-
mance is worse, being at best a few tens of pVHz−1=2 for
the nonlinear regime TS ≪ TN ∼ Tc.
The intrinsic temperature noise (temperature sensitivity)

per unit bandwidth of the thermometer (sT) is related to the
voltage-noise spectral density as

sT ¼
ffiffiffiffiffiffi
SV

p
jτV j

: ð18Þ

In Figs. 6(c) and 6(d), we show the temperature noise sT
for the open-circuit configuration for the two cases of
Figs. 6(a) and 6(b). The differences between the voltage
spectral density is entirely given by the transfer function
which is highly nonlinear as a function of δT. We notice
that in the linear regime jδTj=T ≪ 1, the temperature noise
given by Eq. (15) is a few tens of μKHz−1=2. The maximum
temperature sensibility is obtained in the nonlinear regime,
i.e., jδTj=T ≫ 1, where the temperature noise can be as low
as 8 nKHz−1=2 coinciding with the minimal voltage noise.
By contrast, for the case δT < 0, the best noise perfor-
mance is around 180 nKHz−1=2.
It is interesting to observe the scaling behavior of

noise power as a function of the junction normal-state
resistance RT . Indeed, as SI ∝ 1=RT [see Eq. (11)], from
Eq. (17) one can conclude that SV ∝ RT since Rd ∝ RT .
At the same time, there is no scaling behavior of
the transfer function, τV ¼ ∂V0=∂T. This may be easily
inferred, for instance, from the expression of the
thermovoltage V0 in the linear regime, Eq. (9), since
V lin ∝ α=σ, which is the ratio of two quantities with the
same scaling 1=RT . Alternatively, one can deduce it
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from the relation between open-circuit voltage and the
temperature difference, δT Eq. (16), where RT enters only
as an overall prefactor. We conclude that sT ∝

ffiffiffiffiffiffi
RT

p
,

which shows immediately that the reduction of TE
resistance will be beneficial for increasing the sensitivity
in temperature measurement.
These considerations suggest that in the nonlinear

regime the differential resistance Rd takes the role of RT .
Indeed, one can guess a way to generalize Eq. (15) to the
nonlinear regime by replacing the linear conductance σ by
the differential conductance 1=Rd such that

SV ≈ 4kBTRd; ð19Þ

where the temperature is taken as the average
T ¼ ðTS þ TNÞ=2. The previous expression should con-
verge to the linear result when jδTj=T ≪ 1. The full
numerical results of Figs. 6(c) and 6(d) demonstrate the
accuracy of Eq. (19) shown as dashed lines. This shows that
the noise performance is essentially characterized by the
dependence of differential resistance Rd. Therefore, this
approximation is extremely useful to estimate the noise
performance with the knowledge of the differential resis-
tance Rd only.
It is important to emphasize that in a realistic measure-

ment scheme, the temperature sensitivity of the device is
limited by the amplifying chain. Indeed, in general, the
voltage signal must be amplified with a low-noise pre-
amplifier which is characterized by its intrinsic voltage
noise. The preamplifier noise may degrade the total noise
performance. In particular, assuming for the preamp a
square-root spectral density of approximately 1 nVHz−1=2,
it is clear that it will dominate over the intrinsic voltage
noise of the signal which can be smaller by a few orders
of magnitude [see Figs. 6(a) and 6(b)]. The preamplifier
is, therefore, the main bottleneck in the temperature
detection in this configuration scheme, although it has
the advantage of suppressing the noise nonlinearities
over the considered temperature window. The realistic
performance of this measurement scheme will be roughly
10 μKHz−1=2. This limitation can be overcome by exploit-
ing a closed-circuit configuration, as we discuss in the
next section.

IV. TEMPERATURE-TO-CURRENT CONVERSION

Hereafter, we analyze the performance of a closed-
circuit configuration which corresponds to temperature-
to-current conversion. In this setup, the TE current
ITEðV ¼ 0Þ ¼ I0TE is given by Eq. (3), which depends only
on TS and TN .
In Fig. 7(a), we show how the current depends on TS

for different values of hexc keeping fixed the barrier
polarization P ¼ 0.98 and TN ¼ 0.01Tc. The general
behavior has a “shark-fin” shape, which increases in
amplitude with the hexc. After reaching a maximum at

T�
S, the I

0
TE decreases with TS until the critical temperature

T�
c is reached and the superconductivity is completely

suppressed.
If we fix TS ¼ 0.01Tc, by changing TN we get for

δT < 0, an obvious opposite sign for the thermocurrent I0TE
and an absolute value of the thermocurrent jI0TEj, which
monotonously increases by enhancing jδTj. It finally
saturates to the maximal value

I0TE;max ¼
1

2eRT

Z
∞

−∞
dE½Nþ þ PN−�sgnðEÞ; ð20Þ

which is easily obtained from the general expression of
the TE current, Eq. (3), by taking the limit TS → 0 and
TN → ∞ with V ¼ 0. From this result, we can conclude
that an arbitrary enhancement of jδTj is not of particular
benefit to increase the current signal.
In Figs. 7(c) and 7(d), we show the absolute value of the

temperature-to-current transfer function τI ¼ ∂I0TE=∂T,
respectively, for Figs. 7(a) and 7(b). For δT > 0, the
transfer function has two different behaviors depending
if TS is smaller or larger than T�

S. On the other hand, one
sees that independent of the sign of δT, the transfer function
is maximized in the nonlinear regime jδTj ∼ T.
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A. Noise-performance analysis for the
closed-circuit configuration

In Figs. 8(a) and 8(b), the current noise SI of the closed-
circuit configuration is shown as obtained from Eq. (11)
with V ¼ 0. The current noise as a function of δT is
minimized in the linear regime obtaining approximately
15 fAHz−1=2 and grows by increasing jδTj. The noise
behavior of the closed-circuit configuration it less affected
by the sign of δT in comparison to the open-circuit one
(see Sec. III A). The current noise increases with hexc
since also the average current I0TE increases in such a case
[see Figs. 7(a) and 7(b)].
The intrinsic temperature noise per unit bandwidth of the

thermometer sT in this configuration is given by

sT ¼
ffiffiffiffiffi
SI

p
jτIj

; ð21Þ

where jτIj is the temperature-to-current transfer function
discussed before. The same scaling behavior shown before
for sT ∝

ffiffiffiffiffiffi
RT

p
still holds in this configuration, since now

SI ∝ 1=RT but τI ∝ 1=RT . Consequently, also for this case
the minimization of RT would be, in general, beneficial for
improving noise performance. As in the previous section,

one can try to generalize this argument for the nonlinear
regime by replacing RT with Rd. Since Rd is largely
reduced in comparison to the linear regime value 1=σ,
one can expect an increase of the noise in the nonlinear
regime. At a first glance, this does not look plausible
since the current noise is, in general, higher [see Figs. 8(a)
and 8(b)]. However, our guess seems to be correct, as
shown in Figs. 8(c) and 8(d), where the temperature noise
is minimized for large values of δT.
The lowest intrinsic noise of approximately 35 nKHz−1=2

is obtained in the nonlinear regime for δT ≈ 1K, when
P ¼ 0.98 and Tc ¼ 3 K are chosen. The main difference
with the open-circuit configuration (see Fig. 6) is that in the
present situation the noise depends weakly on the sign of δT
in a wide temperature region. Moreover, in contrast to the
open-circuit configuration, the noise shows a rather smooth
behavior.
As pointed out above, the behavior of the current

noise in the nonlinear regime can be approximated by the
expression

SI ≈
4kBT
Rd

; ð22Þ

where the linear conductance σ of Eq. (14) is replaced
by the inverse differential resistance, 1=Rd. In Figs. 8(c)
and 8(d), we show (dashed lines) this approximation for
the case where we expect the largest nonlinearities, i.e., for
hexc=Δ0 ¼ 0.5. We can, thus, conclude that this simple
formula gives a fairly accurate description of SI in the
nonlinear regime.
In terms of overall temperature noise, the closed-circuit

configuration has two advantages: First, the smooth behav-
ior of temperature noise makes it more attractive than the
open-circuit configuration. Second, while the ideal noise is
better for the open-circuit configuration (see Figs. 6 and 8),
one needs to evaluate the total noise of the measurement
which includes the addition of the preamplifier noise.
The latter noise, as we discussed in the previous section,
strongly degrades the resulting noise figure. The closed-
circuit configuration offers a way to overcome this limi-
tation, as we discuss in the following.
Specifically, we propose to measure the current signal by

coupling the closed circuit via a mutual inductance M to a
superconducting quantum-interference device (SQUID),
in order to measures the flux generated by the current
circulating in the thermoelectric circuit. The total temper-
ature sensitivity, which includes now the SQUID noise, can
be written as

stotT ¼
ffiffiffiffiffiffiffi
Stotϕ

q

jτϕj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SI þ ðSSQUIDϕ =M2Þ

q

jτIj
; ð23Þ

where the temperature-to-flux transfer function is
τϕ ¼ MτI , and the TE flux spectral density STEϕ ¼ M2SI
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is added to the SQUID noise (SSQUIDϕ ) to give the total flux

noise, Stotϕ ¼ STEϕ þ SSQUIDϕ . The square root of the flux
noise for a high-quality commercial SQUID can be as low

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSQUIDϕ

q
∼ 10−7Φ0 Hz−1=2, which is then converted

into an effective circulating current noise in the thermo-
electric circuit of approximately 20 fAHz−1=2 by dividing
it with a typical value for the mutual inductance
M ¼ 10−8 H. By looking at Figs. 8(a) and 8(b), we
immediately see that the intrinsic TE current noise will,
in general, dominate over the SQUID noise almost every-
where in the nonlinear regime where we can achieve the
best sensitivity. Therefore, the temperature noise of this
measurement scheme is limited only by the intrinsic TE
noise mechanisms and can be as low as approximately
35 nKHz−1=2 for a moderate-temperature nonlinearity
(see Fig. 8).

V. TEMPERATURE-TO-FREQUENCY
CONVERSION

We now focus on the temperature-to-frequency conver-
sion process. This conversion is achieved with the device
sketched in Fig. 1 where the thermovoltage generated
across the TE is applied to a generic Josephson element
which is set to operate in the dissipative regime when
IJJ ¼ V=RJJ (where RJJ is the total shunting resistance of
the Josephson element). In this case, there is a time-
oscillating current through the Josephson element with a
frequency equal to the Josephson frequency, ν ¼ jVj=Φ0.
As we discuss above, the value of V depends on the
temperature difference δT across the TE, and, therefore,
the frequency emitted by the Josephson junction is a
measure of δT.
In order to quantify the temperature-to-frequency con-

version effect, one has to determine the voltage V devel-
oped for any given δT imposed across the TE which
satisfies Eq. (4) with a finite load resistance RL ¼ RJJ. This
configuration is intermediate between the open-circuit
and the closed-circuit setup that we discuss above. In the
following, we consider the case where RT=RJJ ¼ 0.2 in
order to produce a detectable frequency signal between
10 GHz and fractions of terahertz.
The frequency-to-temperature performance of this con-

figuration is shown in Fig. 9. We again use the spin-filter
efficiency P ¼ 0.98 and the critical temperature Tc ¼ 3 K
adopted in the previous sections. Figures 9(a) and 9(b)
show the frequency generated by the Josephson element
for positive and negative δT, respectively. In the linear-
response regime, the TE thermovoltage depends only on
jδTj as can be seen from Fig. 9. The information about the
sign of δT is eventually recovered only for the nonlinear
regime.
If TN is kept at 0.01Tc, the maximum frequency is

achieved around hexc ≈ 0.2Δ0 for TS ≈ 0.75Tc and obtains

values as large as approximately 120 GHz. If TS is kept at
low temperature, ν increases monotonically by increasing
both TN and/or hexc and obtains a maximum of approx-
imately 80 GHz.
In the present setup, an important figure of merit of the

structure is represented by the temperature-to-frequency
transfer function τν ¼ ∂ν=∂T plotted in absolute value in
Figs. 9(c) and 9(d). In particular, jτνj exceeding 200 GHz=K
around TS ∼ 1 K can be achieved for hexc ¼ 0.5Δ0 by
heating S, while jτνj up to approximately 55 GHz=K can
be achieved with the same values by heating N.

A. Noise performance

In the temperature-to-frequency conversion process,
the noise is determined by the bias fluctuations gene-
rated from the current noise via the load resistance seen
by the TE, i.e., the parallel between the Josephson
element total resistance RJJ and the TE resistance Rd:
R ¼ RdRJJ=ðRd þ RJJÞ. Note that the differential resis-
tance Rd ¼ ∂V0=∂ITE is calculated from the solutions
of Eq. (4) where RL ¼ RJJ. The important quantity is
represented by the frequency-noise spectral density (Sν),
which can be expressed as

Sν ¼
SIR2

Φ2
0

: ð24Þ
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Finally, the intrinsic temperature noise per unit bandwidth
of the thermometer (sT) is related to the frequency-noise
spectral density as

sT ¼
ffiffiffiffiffi
Sν

p
jτνj

: ð25Þ

Figures 10(a) and 10(b) show the calculated square root
of the frequency-noise spectral density Sν for positive and
negative δT, respectively, calculated for the same param-
eters as in Fig. 9, and for RT ¼ 1Ω. In particular, for
positive δT, the noise spectrum S1=2ν shows a nonmonotonic
behavior with a maximum at intermediate temperatures,
and suppression at higher δT. By contrast, for δT < 0 the
noise spectrum grows monotonically with jδTj, and it is
less influenced by hexc.
The behavior of sT is displayed in Figs. 10(c) and 10(d).

At small jδTj, in the linear regime, the noise sensitivity is
given by several tens of μK Hz−1=2. By increasing jδTj, the
growth of S1=2ν [Figs. 10(a) and 10(b)] is advantageously
compensated by the enhancement of τν [see Figs. 9(c)
and 9(d)]. The best noise performance is obtained when
jτνj is quite near its maximum. The values of sT ∼
35 nKHz−1=2 are obtained around 1 K for hexc ¼ 0.5Δ0.
After the minimum of sT , for δT > 0, we see a peak due to
the divergence of jτνj−1, i.e., the vanishing of the transfer

function, as shown in Fig. 9(c). Differently for δT < 0,
one observes a smooth increase of sT determined by
the progressive reduction of the transfer function [see
Fig. 9(d)], which is a consequence of the saturation of the
frequency when TN → ∞. We conclude by noticing that
also for this case, the best noise performance is obtained in
the nonlinear regime for jδTj ≲ 1 K where sT is almost
independent of the sign of δT. This behavior is essentially
due again to the fact that Rd is strongly reduced in the
nonlinear regime.
In this configuration, the power of the generated fre-

quency signal might be somewhat low. Anyway, one can
deploy the standard techniques in order to increase the
emission power by connecting in parallel arrays of JJs
[42,43]. The only limiting factor in that case will be the
power that the TE element can sustain and transfer to the
JJs. A rough estimate shows that when RT=RJJ ¼ 0.2
and RT ¼ 1Ω, the TE can produce a power of the order
of approximately 100 pW–10 nW which will be high
enough to make the (10–100)-GHz signal generated by the
Josephson junction detectable.

VI. SUMMARY

In summary, we theoretically investigate a thermoelectric
structure based on a N-FI-S junction. We fully characterize
the thermoelectrical properties of the TE both in the linear
and nonlinear regimes. We assume different measurement
configurations as determined by the load resistance value.
In particular, we show that by exploiting realistic materials
such as EuS or EuO (providing polarization P up to
approximately 98%) in combination with superconducting
Al thin films, the device provides remarkable temperature-
noise performance. We find that in the open-circuit con-
figuration, where the temperature signal is returned via the
Seebeck thermovoltage, the lowest achievable intrinsic
noise of approximately 10 nKHz−1=2 is limited by the
amplifying chain. On the other side, we find that in the
closed-circuit configuration, where the temperature infor-
mation is encoded in the Peltier thermocurrent, one can
detect the signal via a low-noise flux measurement of an
inductively coupled SQUID. In such case, the temperature-
noise performance is mainly determined by intrinsic
noise mechanisms, with the best value of approximately
35 nKHz−1=2 is achievable with state-of-the-art SQUID
technology. Interestingly, we identify in the differential
resistance Rd of the TE one of the main factors that
determines the intrinsic noise performance of the system.
This finding explains why the best noise performance is
obtained in the nonlinear temperature regime, since for
that regime Rd is strongly suppressed. This behavior is a
nontrivial consequence of the strong nonlinearities peculiar
of the N-FI-S junction.
We finally discuss a temperature-to-frequency converter

where the obtained thermovoltage is converted through a
dissipative Josephson junction into a high-frequency signal

0 1 2 3

1

2

3

4

5

0 1 2
10-2

10-1

100

101

0 1 2 3
0

1

2

0 1 2
1 0-2

1 0-1

100

101

(a) (b)

hexc /Δ
0

0.1
0.2
0.3
0.4
0.5

(d)

T
N

(K)

[x
10

3 ]

S
ν1/

2
(H

z1/
2 )

[x
10

4 ]

T > 0 T < 0

(c)

s T
(μ

K
H

z-1
/2
)

T
S

(K)

FIG. 10. Noise performance of the temperature-to-frequency
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for a few values of hexc. (d) sT vs TN calculated at TS ¼ 0.01Tc
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in the frequency window spanning from a few gigahertz up
to approximately 1011 Hz. In particular, we show that the
device allows for the generation of Josephson radiation at a
frequency that depends on both the amplitude and sign of
the temperature difference across the N-FI-S junction,
therefore, opening the route for high-frequency detection
associated to high-temperature sensitivity. Frequencies up
to approximately 120 GHz and large transfer functions (i.e.,
up to 200 GHz=K) around approximately 1–2 K can be
obtained in a structure implementable with the above-
mentioned prototype FIs. In this configuration, the device is
capable of providing intrinsic temperature noise down to
approximately 35 nKHz−1=2 around 1 K for a sufficiently
large hexc. The proposed superconducting hybrid structure
has the potential for the realization of effective on-demand
on-chip temperature-to-frequency converters as well as
ultrasensitive electron thermometers or radiation sensors
easily integrable with current superconducting electronics.
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