36,132 research outputs found

    Dijet Event Shapes as Diagnostic Tools

    Full text link
    Event shapes have long been used to extract information about hadronic final states and the properties of QCD, such as particle spin and the running coupling. Recently, a family of event shapes, the angularities, has been introduced that depends on a continuous parameter. This additional parameter-dependence further extends the versatility of event shapes. It provides a handle on nonperturbative power corrections, on non-global logarithms, and on the flow of color in the final state.Comment: 18 pages, 3 figure

    Effect of differences in proton and neutron density distributions on fission barriers

    Full text link
    The neutron and proton density distributions obtained in constrained Hartree-Fock-Bogolyubov calculations with the Gogny force along the fission paths of 232Th, 236U, 238U and 240Pu are analyzed. Significant differences in the multipole deformations of neutron and proton densities are found. The effect on potential energy surfaces and on barrier heights of an additional constraint imposing similar spatial distributions to neutrons and protons, as assumed in macroscopic-microscopic models, is studied.Comment: 5 pages in Latex, 4 figures in ep

    Analytic Calculation of Prompt Photon plus Associated Heavy Flavor at Next-to-Leading Order in QCD

    Get PDF
    Contributions through second order, O(αs2)O(\alpha ^2_s), in perturbative quantum chromodynamics are calculated analytically for inclusive associated production of a prompt photon and a charm quark at large values of transverse momentum in high energy hadron-hadron collisions. Seven partonic subprocesses contribute at order αs2\alpha^2_s. We find important corrections to the lowest order, O(αs)O(\alpha_s), subprocess cg→γcc g \rightarrow \gamma c. We demonstrate to what extent data from p+pˉ→γ+c+Xp +\bar{p}\rightarrow \gamma + c + X may serve to measure the charm quark density in the nucleon.Comment: 34 pages RevTex plus 9 figures submitted as uuencoded ps files; figures replaced and text revised to include one additional referenc

    Infrared Imaging of Capella with the IOTA Closure Phase Interferometer

    Get PDF
    We present infrared aperture synthesis maps produced with the upgraded IOTA interferometer. Michelson interferograms on the close binary system Capella (Alpha Aur) were obtained in the H-band between 2002 November 12 and 16 using the IONIC3 beam combiner. With baselines of 15m < B < 38m, we were able to determine the relative position of the binary components with milliarcsecond (mas) precision and to track their movement along the approx. 14 degree arc covered by our observation run. We briefly describe the algorithms used for visibility and closure phase estimation. Three different Hybrid Mapping and Bispectrum Fitting techniques were implemented within one software framework and used to reconstruct the source brightness distribution. By dividing our data into subsets, the system could be mapped at three epochs, revealing the motion of the stars. The precise position of the binary components was also determined with model fits, which in addition revealed I_Aa/I_Ab=1.49 +/- 0.10 and apparent stellar uniform-disk (UD) diameters of Theta_Aa=8.9 +/- 0.6 mas and Theta_Ab=5.8 +/- 0.8 mas. To improve the u, v-plane coverage, we compensated this orbital motion by applying a rotation-compensating coordinate transformation. The resulting model-independent map with a beam size of 5.4 x 2.6 mas allows the resolution of the stellar surfaces of the Capella giants themselves.Comment: Accepted by the Astronomical Journal (2005-03-21

    Systematic Errors in Cosmic Microwave Background Interferometry

    Get PDF
    Cosmic microwave background (CMB) polarization observations will require superb control of systematic errors in order to achieve their full scientific potential, particularly in the case of attempts to detect the B modes that may provide a window on inflation. Interferometry may be a promising way to achieve these goals. This paper presents a formalism for characterizing the effects of a variety of systematic errors on interferometric CMB polarization observations, with particular emphasis on estimates of the B-mode power spectrum. The most severe errors are those that couple the temperature anisotropy signal to polarization; such errors include cross-talk within detectors, misalignment of polarizers, and cross-polarization. In a B mode experiment, the next most serious category of errors are those that mix E and B modes, such as gain fluctuations, pointing errors, and beam shape errors. The paper also indicates which sources of error may cause circular polarization (e.g., from foregrounds) to contaminate the cosmologically interesting linear polarization channels, and conversely whether monitoring of the circular polarization channels may yield useful information about the errors themselves. For all the sources of error considered, estimates of the level of control that will be required for both E and B mode experiments are provided. Both experiments that interfere linear polarizations and those that interfere circular polarizations are considered. The fact that circular experiments simultaneously measure both linear polarization Stokes parameters in each baseline mitigates some sources of error.Comment: 19 pages, 9 figures, submitted to Phys. Rev.

    Ferrimagnetism of the magnetoelectric compound Cu2_2OSeO3_3 probed by 77^{77}Se NMR

    Full text link
    We present a thorough 77^{77}Se NMR study of a single crystal of the magnetoelectric compound Cu2_2OSeO3_3. The temperature dependence of the local electronic moments extracted from the NMR data is fully consistent with a magnetic phase transition from the high-T paramagnetic phase to a low-T ferrimagnetic state with 3/4 of the Cu2+^{2+} ions aligned parallel and 1/4 aligned antiparallel to the applied field of 14.09 T. The transition to this 3up-1down magnetic state is not accompanied by any splitting of the NMR lines or any abrupt modification in their broadening, hence there is no observable reduction of the crystalline symmetry from its high-T cubic \textit{P}21_13 space group. These results are in agreement with high resolution x-ray diffraction and magnetization data on powder samples reported previously by Bos {\it et al.} [Phys. Rev. B, {\bf 78}, 094416 (2008)]. We also develop a mean field theory description of the problem based on a microscopic spin Hamiltonian with one antiferromagnetic (Jafm≃68J_\text{afm}\simeq 68 K) and one ferromagnetic (Jfm≃−50J_\text{fm}\simeq -50 K) nearest-neighbor exchange interaction

    Increased Yield of ttbb at Hadron Colliders in Low-Energy Supersymmetry

    Get PDF
    Light bottom squarks and gluinos have been invoked to explain the b quark pair production excess at the Tevatron. We investigate the associated production of ttbb at hadron colliders in this scenario, and find that the rates for this process are enhanced over the Standard Model prediction. If light gluinos exist, it may be possible to detect them at the Tevatron, and they could easily be observed at the LHC.Comment: 5p, references added, version accepted to PR

    Universal response of the type-II Weyl semimetals phase diagram

    Get PDF
    The discovery of Weyl semimetals represents a significant advance in topological band theory. They paradigmatically enlarged the classification of topological materials to gapless systems while simultaneously providing experimental evidence for the long-sought Weyl fermions. Beyond fundamental relevance, their high mobility, strong magnetoresistance, and the possible existence of even more exotic effects, such as the chiral anomaly, make Weyl semimetals a promising platform to develop radically new technology. Fully exploiting their potential requires going beyond the mere identification of materials and calls for a detailed characterization of their functional response, which is severely complicated by the coexistence of surface- and bulk-derived topologically protected quasiparticles, i.e., Fermi arcs and Weyl points, respectively. Here, we focus on the type-II Weyl semimetal class where we find a stoichiometry-dependent phase transition from a trivial to a non-trivial regime. By exploring the two extreme cases of the phase diagram, we demonstrate the existence of a universal response of both surface and bulk states to perturbations. We show that quasi-particle interference patterns originate from scattering events among surface arcs. Analysis reveals that topologically non-trivial contributions are strongly suppressed by spin texture. We also show that scattering at localized impurities generate defect-induced quasiparticles sitting close to the Weyl point energy. These give rise to strong peaks in the local density of states, which lift the Weyl node significantly altering the pristine low-energy Weyl spectrum. Visualizing the microscopic response to scattering has important consequences for understanding the unusual transport properties of this class of materials. Overall, our observations provide a unifying picture of the Weyl phase diagram

    Massive Lepton Pairs as a Prompt Photon Surrogate

    Get PDF
    We discuss the transverse momentum distribution for the production of massive lepton-pairs in hadron reactions at fixed target and collider energies within the context of next-to-leading order perturbative quantum chromodynamics. For values of the transverse momentum QTQ_T greater than the pair mass QQ, QT>QQ_T > Q, we show that the differential cross section is dominated by subprocesses initiated by incident gluons. Massive lepton-pair differential cross sections are an advantageous source of constraints on the gluon density, free from the experimental and theoretical complications of photon isolation that beset studies of prompt photon production. We compare calculations with data and provide predictions for the differential cross section as a function of QTQ_T in proton-antiproton reactions at center-of-mass energies of 1.8 TeV, and in proton-nucleon reactions at fixed target and LHC energies.Comment: 36 pages, RevTeX, including 16 ps files of figures; minor changes in wording; one reference added. Version to appear in Phys Rev

    Production of a Prompt Photon in Association with Charm at Next-to-Leading Order in QCD

    Get PDF
    A second order, O(αs2)O(\alpha ^2_s), calculation in perturbative quantum chromodynamics of the two particle inclusive cross section is presented for the reaction p+pˉ→γ+c+Xp +\bar{p}\rightarrow \gamma + c + X for large values of the transverse momentum of the prompt photon and charm quark. The combination of analytic and Monte Carlo integration methods used here to perform phase-space integrations facilitates imposition of photon isolation restrictions and other selections of relevance in experiments. Differential distributions are provided for various observables. Positive correlations in rapidity are predicted.Comment: 27 pages in RevTex plus 14 figures in one compressed PS fil
    • 

    corecore