1,970 research outputs found
The T2K ND280 Off-Axis Pi-Zero Detector
The Pi-Zero detector (P{\O}D) is one of the subdetectors that makes up the
off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino
experiment. The primary goal for the P{\O}D is to measure the relevant cross
sections for neutrino interactions that generate pi-zero's, especially the
cross section for neutral current pi-zero interactions, which are one of the
dominant sources of background to the electron neutrino appearance signal in
T2K. The P{\O}D is composed of layers of plastic scintillator alternating with
water bags and brass sheets or lead sheets and is one of the first detectors to
use Multi-Pixel Photon Counters (MPPCs) on a large scale.Comment: 17 pages, submitted to NIM
Secondary prevention through comprehensive cardiovascular rehabilitation : from knowledge to implementation. 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology
©The European Society of Cardiology 2020. Article reuse guidelines : sagepub.com/journals-permissionsSecondary prevention through comprehensive cardiac rehabilitation has been recognized as the most cost-effective intervention to ensure favourable outcomes across a wide spectrum of cardiovascular disease, reducing cardiovascular mortality, morbidity and disability, and to increase quality of life. The delivery of a comprehensive and ‘modern’ cardiac rehabilitation programme is mandatory both in the residential and the out-patient setting to ensure expected outcomes. The present position paper aims to update the practical recommendations on the core components and goals of cardiac rehabilitation intervention in different cardiovascular conditions, in order to assist the whole cardiac rehabilitation staff in the design and development of the programmes, and to support healthcare providers, insurers, policy makers and patients in the recognition of the positive nature of cardiac rehabilitation. Starting from the previous position paper published in 2010, this updated document maintains a disease-oriented approach, presenting both well-established and more controversial aspects. Particularly for implementation of the exercise programme, advances in different training modalities were added and new challenging populations were considered. A general table applicable to all cardiovascular conditions and specific tables for each clinical condition have been created for routine practice.info:eu-repo/semantics/publishedVersio
Analytical expressions for stopping-power ratios relevant for accurate dosimetry in particle therapy
In particle therapy, knowledge of the stopping-power ratios (STPRs) of the
ion beam for air and water is necessary for accurate ionization chamber
dosimetry. Earlier work has investigated the STPRs for pristine carbon ion
beams, but here we expand the calculations to a range of ions (1 <= z <= 18) as
well as spread out Bragg peaks (SOBPs) and provide a theoretical in-depth study
with a special focus on the parameter regime relevant for particle therapy. The
Monte Carlo transport code SHIELD-HIT is used to calculate complete
particle-fluence spectra which are required for determining STPRs according to
the recommendations of the International Atomic Energy Agency (IAEA).
We confirm that the STPR depends primarily on the current energy of the ions
rather than on their charge z or absolute position in the medium. However,
STPRs for different sets of stopping-power data for water and air recommended
by the International Commission on Radiation Units & Measurements (ICRU) are
compared, including also the recently revised data for water, yielding
deviations up to 2% in the plateau region. In comparison, the influence of the
secondary particle spectra on the STPR is about two orders of magnitude smaller
in the whole region up till the practical range. The gained insights enable us
to propose an analytic approximation for the STPR for both pristine and SOBPs
as a function of penetration depth, which parametrically depend only on the
initial energy and the residual range of the ion, respectively.Comment: 21 pages, 5 figures, fixed bug with figures in v
Delphi consensus recommendations on how to provide cardiovascular rehabilitation in the COVID-19 era
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: [email protected] Delphi consensus by 28 experts from the European Association of Preventive Cardiology (EAPC) provides initial recommendations on how cardiovascular rehabilitation (CR) facilities should modulate their activities in view of the ongoing coronavirus disease 2019 (COVID-19) pandemic. A total number of 150 statements were selected and graded by Likert scale [from -5 (strongly disagree) to +5 (strongly agree)], starting from six open-ended questions on (i) referral criteria, (ii) optimal timing and setting, (iii) core components, (iv) structure-based metrics, (v) process-based metrics, and (vi) quality indicators. Consensus was reached on 58 (39%) statements, 48 'for' and 10 'against' respectively, mainly in the field of referral, core components, and structure of CR activities, in a comprehensive way suitable for managing cardiac COVID-19 patients. Panelists oriented consensus towards maintaining usual activities on traditional patient groups referred to CR, without significant downgrading of intervention in case of COVID-19 as a comorbidity. Moreover, it has been suggested to consider COVID-19 patients as a referral group to CR per se when the viral disease is complicated by acute cardiovascular (CV) events; in these patients, the potential development of COVID-related CV sequelae, as well as of pulmonary arterial hypertension, needs to be focused. This framework might be used to orient organization and operational of CR programmes during the COVID-19 crisis.info:eu-repo/semantics/publishedVersio
Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers
Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates.
Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS.
Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS.
Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management
The 'Risk-Adjusted' Price-Concentration Relationship in Banking
Price-concentration studies in banking typically find a significant and negative relationship between consumer deposit rates (i.e., prices) and market concentration. This relationship implies that highly concentrated banking markets are "bad" for depositors. It also provides support for the Structure-Conduct-Performance hypothesis and rejects the Efficient-Structure hypothesis. However, these studies have focused almost exclusively on supply-side control variables and have neglected demand-side variables when estimating the reduced form price-concentration relationship. For example, previous studies have not included in their analysis bank-specific risk variables as measures of cross-sectional derived deposit demand. The authors find that when bank-specific risk variables are included in the analysis the magnitude of the relationship between deposit rates and market concentration decreases by over 50 percent. They offer an explanation for these results based on the correlation between a bank’s risk profile and the structure of the market in which it operates. These results suggest that it may be necessary to reconsider the well-established assumption that higher market concentration necessarily leads to anticompetitive deposit pricing behavior by commercial banks. This finding has direct implications for the antitrust evaluations of bank merger and acquisition proposals by regulatory agencies. And, in a more general sense, these results suggest that any Structure-Conduct-Performance-based study that does not explicitly consider the possibility of very different risk profiles of the firms analyzed may indeed miss a very important set of explanatory variables. And, thus, the results from those studies may be spurious
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider
Measurements of multi-particle azimuthal correlations (cumulants) for charged
particles in p-Pb and Pb-Pb collisions are presented. They help address the
question of whether there is evidence for global, flow-like, azimuthal
correlations in the p-Pb system. Comparisons are made to measurements from the
larger Pb-Pb system, where such evidence is established. In particular, the
second harmonic two-particle cumulants are found to decrease with multiplicity,
characteristic of a dominance of few-particle correlations in p-Pb collisions.
However, when a gap is placed to suppress such correlations,
the two-particle cumulants begin to rise at high-multiplicity, indicating the
presence of global azimuthal correlations. The Pb-Pb values are higher than the
p-Pb values at similar multiplicities. In both systems, the second harmonic
four-particle cumulants exhibit a transition from positive to negative values
when the multiplicity increases. The negative values allow for a measurement of
to be made, which is found to be higher in Pb-Pb collisions at
similar multiplicities. The second harmonic six-particle cumulants are also
found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find
which is indicative of a Bessel-Gaussian
function for the distribution. For very high-multiplicity Pb-Pb
collisions, we observe that the four- and six-particle cumulants become
consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and
Pb-Pb are measured. These are found to be similar for overlapping
multiplicities, when a gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
- …