3,943 research outputs found

    Quiescent Prominence Dynamics Observed with the Hinode Solar Optical Telescope. II. Prominence Bubble Boundary Layer Characteristics and the Onset of a Coupled Kelvin–Helmholtz Rayleigh–Taylor Instability

    Get PDF
    This is the author accepted manuscript. The final version is available from American Astronomical Society via the DOI in this record.We analyze solar quiescent prominence bubble characteristics and instability dynamics using Hinode/Solar Optical Telescope (SOT) data. We measure bubble expansion rate, prominence downflows, and the profile of the boundary layer brightness and thickness as a function of time. The largest bubble analyzed rises into the prominence with a speed of about 1.3 km s−1 until it is destabilized by a localized shear flow on the boundary. Boundary layer thickness grows gradually as prominence downflows deposit plasma onto the bubble with characteristic speeds of 20 − 35 km s−1 . Lateral downflows initiate from the thickened boundary layer with characteristic speeds of 25 − 50 km s−1 , “draining” the layer of plasma. Strong shear flow across one bubble boundary leads to an apparent coupled Kelvin-Helmholtz Rayleigh-Taylor (KH-RT) instability. We measure shear flow speeds above the bubble of 10 km s−1 and infer interior bubble flow speeds on the order of 100 km s−1 . Comparing the measured growth rate of the instability to analytic expressions, we infer a magnetic flux density across the bubble boundary of ∌ 10−3 T (10 gauss) at an angle of ∌ 70◩ to the prominence plane. The results are consistent with the hypothesis that prominence bubbles are caused by magnetic flux that emerges below a prominence, setting up the conditions for RT, or combined KH-RT, instability flows that transport flux, helicity, and hot plasma upward into the overlying coronal magnetic flux ropeTEB was supported by NASA contracts NNM07AA01C (Solar-B FPP), NNG04EA00C (SDO/AIA) while at the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL), and by The National Weather Service (NWS) Office of Science and Technology Integration (OSTI) while at the National Oceanic and Atmospheric Administration (NOAA). A.H. was supported by his STFC Ernest Rutherford Fellowship grant number ST/L00397X/2. W.L. was supported by NASA HGI grant NNX15AR15G and NASA contract NNG09FA40C (IRIS) at LMSAL

    Density-Matrix Algorithm for Phonon Hilbert Space Reduction in the Numerical Diagonalization of Quantum Many-Body Systems

    Full text link
    Combining density-matrix and Lanczos algorithms we propose a new optimized phonon approach for finite-cluster diagonalizations of interacting electron-phonon systems. To illustrate the efficiency and reliability of our method, we investigate the problem of bipolaron band formation in the extended Holstein Hubbard model.Comment: 14 pages, 6 figures, Workshop on High Performance Computing in Science and Engineering, Stuttgart 200

    Management and efficacy of intensified insulin therapy starting in outpatients

    Get PDF
    Diabetic patients under multiple injection insulin therapy (i.e., intensified insulin therapy, IIT) usually start this treatment during hospitalization. We report here on the logistics, efficacy, and safety of IIT, started in outpatients. Over 8 months, 52 type I and type II diabetics were followed up whose insulin regimens consecutively had been changed from conventional therapy to IIT. Two different IIT strategies were compared: free mixtures of regular and intermediate (12 hrs)-acting insulin versus the basal and prandial insulin treatment with preprandial injections of regular insulin, and ultralente (24 hrs-acting) or intermediate insulin for the basal demand. After 8 months HbA1 levels had decreased from 10.6%±2.4% to 8.0%±1.3% (means±SD). There was no difference between the two regimens with respect to metabolic control; but type II patients maintained the lowered HbA1 levels better than type I patients. Only two patients were hospitalized during the follow-up time because of severe hypoglycemia. An increase of body weight due to the diet liberalization during IIT became a problem in one-third of the patients. Our results suggest that outpatient initiation of IIT is safe and efficacious with respect to near-normoglycemic control. Weight control may become a problem in IIT patients

    The hand of Homo naledi

    Get PDF
    A nearly complete right hand of an adult hominin was recovered from the Rising Star cave system, South Africa. Based on associated hominin material, the bones of this hand are attributed to Homo naledi. This hand reveals a long, robust thumb and derived wrist morphology that is shared with Neandertals and modern humans, and considered adaptive for intensified manual manipulation. However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension. These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi

    Radio Emission from Ultra-Cool Dwarfs

    Full text link
    The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed that these objects can generate and dissipate powerful magnetic fields. Radio observations provide unparalleled insight into UCD magnetism: detections extend to brown dwarfs with temperatures <1000 K, where no other observational probes are effective. The data reveal that UCDs can generate strong (kG) fields, sometimes with a stable dipolar structure; that they can produce and retain nonthermal plasmas with electron acceleration extending to MeV energies; and that they can drive auroral current systems resulting in significant atmospheric energy deposition and powerful, coherent radio bursts. Still to be understood are the underlying dynamo processes, the precise means by which particles are accelerated around these objects, the observed diversity of magnetic phenomenologies, and how all of these factors change as the mass of the central object approaches that of Jupiter. The answers to these questions are doubly important because UCDs are both potential exoplanet hosts, as in the TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.Comment: 19 pages; submitted chapter to the Handbook of Exoplanets, eds. Hans J. Deeg and Juan Antonio Belmonte (Springer-Verlag

    Experimental observation of the optical spin-orbit torque

    Full text link
    Spin polarized carriers electrically injected into a magnet from an external polarizer can exert a spin transfer torque (STT) on the magnetization. The phe- nomenon belongs to the area of spintronics research focusing on manipulating magnetic moments by electric fields and is the basis of the emerging technologies for scalable magnetoresistive random access memories. In our previous work we have reported experimental observation of the optical counterpart of STT in which a circularly polarized pump laser pulse acts as the external polarizer, allowing to study and utilize the phenomenon on several orders of magnitude shorter timescales than in the electric current induced STT. Recently it has been theoretically proposed and experimentally demonstrated that in the absence of an external polarizer, carriers in a magnet under applied electric field can develop a non-equilibrium spin polarization due to the relativistic spin-orbit coupling, resulting in a current induced spin-orbit torque (SOT) acting on the magnetization. In this paper we report the observation of the optical counterpart of SOT. At picosecond time-scales, we detect excitations of magnetization of a ferromagnetic semiconductor (Ga,Mn)As which are independent of the polarization of the pump laser pulses and are induced by non-equilibrium spin-orbit coupled photo-holes.Comment: 4 figure, supplementary information. arXiv admin note: text overlap with arXiv:1101.104

    Cognitive networks: brains, internet, and civilizations

    Get PDF
    In this short essay, we discuss some basic features of cognitive activity at several different space-time scales: from neural networks in the brain to civilizations. One motivation for such comparative study is its heuristic value. Attempts to better understand the functioning of "wetware" involved in cognitive activities of central nervous system by comparing it with a computing device have a long tradition. We suggest that comparison with Internet might be more adequate. We briefly touch upon such subjects as encoding, compression, and Saussurean trichotomy langue/langage/parole in various environments.Comment: 16 page

    Structures and waves in a nonlinear heat-conducting medium

    Full text link
    The paper is an overview of the main contributions of a Bulgarian team of researchers to the problem of finding the possible structures and waves in the open nonlinear heat conducting medium, described by a reaction-diffusion equation. Being posed and actively worked out by the Russian school of A. A. Samarskii and S.P. Kurdyumov since the seventies of the last century, this problem still contains open and challenging questions.Comment: 23 pages, 13 figures, the final publication will appear in Springer Proceedings in Mathematics and Statistics, Numerical Methods for PDEs: Theory, Algorithms and their Application

    Clinical course, costs and predictive factors for response to treatment in carpal tunnel syndrome: The PALMS study protocol

    Get PDF
    Background Carpal tunnel syndrome (CTS) is the most common neuropathy of the upper limb and a significant contributor to hand functional impairment and disability. Effective treatment options include conservative and surgical interventions, however it is not possible at present to predict the outcome of treatment. The primary aim of this study is to identify which baseline clinical factors predict a good outcome from conservative treatment (by injection) or surgery in patients diagnosed with carpal tunnel syndrome. Secondary aims are to describe the clinical course and progression of CTS, and to describe and predict the UK cost of CTS to the individual, National Health Service (NHS) and society over a two year period. Methods/Design In this prospective observational cohort study patients presenting with clinical signs and symptoms typical of CTS and in whom the diagnosis is confirmed by nerve conduction studies are invited to participate. Data on putative predictive factors are collected at baseline and follow-up through patient questionnaires and include standardised measures of symptom severity, hand function, psychological and physical health, comorbidity and quality of life. Resource use and cost over the 2 year period such as prescribed medications, NHS and private healthcare contacts are also collected through patient self-report at 6, 12, 18 and 24 months. The primary outcome used to classify treatment success or failures will be a 5-point global assessment of change. Secondary outcomes include changes in clinical symptoms, functioning, psychological health, quality of life and resource use. A multivariable model of factors which predict outcome and cost will be developed. Discussion This prospective cohort study will provide important data on the clinical course and UK costs of CTS over a two-year period and begin to identify predictive factors for treatment success from conservative and surgical interventions
    • 

    corecore