4,159 research outputs found

    Zooming in on Transcription Preinitiation

    Get PDF
    AbstractClass II gene transcription commences with the assembly of the Preinitiation Complex (PIC) from a plethora of proteins and protein assemblies in the nucleus, including the General Transcription Factors (GTFs), RNA polymerase II (RNA pol II), co-activators, co-repressors, and more. TFIID, a megadalton-sized multiprotein complex comprising 20 subunits, is among the first GTFs to bind the core promoter. TFIID assists in nucleating PIC formation, completed by binding of further factors in a highly regulated stepwise fashion. Recent results indicate that TFIID itself is built from distinct preformed submodules, which reside in the nucleus but also in the cytosol of cells. Here, we highlight recent insights in transcription factor assembly and the regulation of transcription preinitiation

    Evidence of fatal skeletal injuries on Malapa Hominins 1 and 2

    Get PDF
    Malapa is one of the richest early hominin sites in Africa and the discovery site of the hominin species, Australopithecus sediba. The holotype and paratype (Malapa Hominin 1 and 2, or MH1 and MH2, respectively) skeletons are among the most complete in the early hominin record. Dating to approximately two million years BP, MH1 and MH2 are hypothesized to have fallen into a natural pit trap. All fractures evident on MH1 and MH2 skeletons were evaluated and separated based on wet and dry bone fracture morphology/characteristics. Most observed fractures are post-depositional, but those in the right upper limb of the adult hominin strongly indicate active resistance to an impact, while those in the juvenile hominin mandible are consistent with a blow to the face. The presence of skeletal trauma independently supports the falling hypothesis and supplies the first evidence for the manner of death of an australopith in the fossil record that is not attributed to predation or natural death

    PPAR? Downregulation by TGF in Fibroblast and Impaired Expression and Function in Systemic Sclerosis: A Novel Mechanism for Progressive Fibrogenesis

    Get PDF
    The nuclear orphan receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) is expressed in multiple cell types in addition to adipocytes. Upon its activation by natural ligands such as fatty acids and eicosanoids, or by synthetic agonists such as rosiglitazone, PPAR-γ regulates adipogenesis, glucose uptake and inflammatory responses. Recent studies establish a novel role for PPAR-γ signaling as an endogenous mechanism for regulating transforming growth factor-ß (TGF-ß)- dependent fibrogenesis. Here, we sought to characterize PPAR-γ function in the prototypic fibrosing disorder systemic sclerosis (SSc), and delineate the factors governing PPAR-γ expression. We report that PPAR-γ levels were markedly diminished in skin and lung biopsies from patients with SSc, and in fibroblasts explanted from the lesional skin. In normal fibroblasts, treatment with TGF-ß resulted in a time- and dose-dependent down-regulation of PPAR-γ expression. Inhibition occurred at the transcriptional level and was mediated via canonical Smad signal transduction. Genome-wide expression profiling of SSc skin biopsies revealed a marked attenuation of PPAR-γ levels and transcriptional activity in a subset of patients with diffuse cutaneous SSc, which was correlated with the presence of a ''TGF-ß responsive gene signature'' in these biopsies. Together, these results demonstrate that the expression and function of PPAR-γ are impaired in SSc, and reveal the existence of a reciprocal inhibitory cross-talk between TGF-ß activation and PPAR-γ signaling in the context of fibrogenesis. In light of the potent anti-fibrotic effects attributed to PPAR-γ, these observations lead us to propose that excessive TGF-ß activity in SSc accounts for impaired PPAR-γ function, which in turn contributes to unchecked fibroblast activation and progressive fibrosis. © 2010 Wei et al

    Linear Estimation of Location and Scale Parameters Using Partial Maxima

    Full text link
    Consider an i.i.d. sample X^*_1,X^*_2,...,X^*_n from a location-scale family, and assume that the only available observations consist of the partial maxima (or minima)sequence, X^*_{1:1},X^*_{2:2},...,X^*_{n:n}, where X^*_{j:j}=max{X^*_1,...,X^*_j}. This kind of truncation appears in several circumstances, including best performances in athletics events. In the case of partial maxima, the form of the BLUEs (best linear unbiased estimators) is quite similar to the form of the well-known Lloyd's (1952, Least-squares estimation of location and scale parameters using order statistics, Biometrika, vol. 39, pp. 88-95) BLUEs, based on (the sufficient sample of) order statistics, but, in contrast to the classical case, their consistency is no longer obvious. The present paper is mainly concerned with the scale parameter, showing that the variance of the partial maxima BLUE is at most of order O(1/log n), for a wide class of distributions.Comment: This article is devoted to the memory of my six-years-old, little daughter, Dionyssia, who leaved us on August 25, 2010, at Cephalonia isl. (26 pages, to appear in Metrika

    Proteomics: in pursuit of effective traumatic brain injury therapeutics

    Get PDF
    Effective traumatic brain injury (TBI) therapeutics remain stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development, as it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Lastly, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for TBI patients

    Tailoring the atomic structure of graphene nanoribbons by STM lithography

    Full text link
    The practical realization of nano-scale electronics faces two major challenges: the precise engineering of the building blocks and their assembly into functional circuits. In spite of the exceptional electronic properties of carbon nanotubes only basic demonstration-devices have been realized by time-consuming processes. This is mainly due to the lack of selective growth and reliable assembly processes for nanotubes. However, graphene offers an attractive alternative. Here we report the patterning of graphene nanoribbons (GNRs) and bent junctions with nanometer precision, well-defined widths and predetermined crystallographic orientations allowing us to fully engineer their electronic structure using scanning tunneling microscope (STM) lithography. The atomic structure and electronic properties of the ribbons have been investigated by STM and tunneling spectroscopy measurements. Opening of confinement gaps up to 0.5 eV, allowing room temperature operation of GNR-based devices, is reported. This method avoids the difficulties of assembling nano-scale components and allows the realization of complete integrated circuits, operating as room temperature ballistic electronic devices.Comment: 8 pages text, 5 figures, Nature Nanotechnology, in pres

    The hotel in history: evolving perspectives

    Get PDF
    10.1080/1755182X.2017.1343784Journal of Tourism History9192-11

    Pathomechanisms of ulnar ligament lesions of the wrist in a cadaveric distal radius fracture model

    Get PDF
    Background and purpose: Mechanisms of injury to ulnar sided ligaments, stabilizing the distal radioulnar joint and the ulna to the carpus, associated with dorsally displaced distal radius fractures are poorly described. We investigated the injury patterns in a human cadaver fracture model. Methods: Fresh frozen human cadaver arms were used. A dorsal open wedge osteotomy was made in the distal radius. In 8 specimens pressure was applied to the palm with the wrist in dorsiflexion and ulnar sided stabilizing structures subsequently severed. Dorsal angulation was measured on digitized radiographs. In 8 more specimens the triangular fibrocartilage complex was forced into rupture by axially loading the forearm with the wrist in dorsiflexion. The ulnar side was dissected and injuries were recorded. Results: Intact ulnar soft tissues limited the dorsal angulation of the distal radius fragment to a median of 32o (16-34o). A combination of bending and shearing of the distal radius fragment was needed to create TFCC injuries. Both palmar and dorsal injuries were observed simultaneously in 6/8 specimens. Interpretation: A TFCC injury can be expected when dorsal angulation of a distal radius fracture exceeds 32o. The extensor carpi ulnaris subsheath may be a functionally integral part of the TFCC. Both dorsal and palmar structures can tear simultaneously. These findings may have implications for reconstruction of ulnar sided soft tissue injuries

    Reduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings

    Get PDF
    In this work we consider (hierarchical, Lagrange) reduced basis approximation and a posteriori error estimation for elasticity problems in affinley parametrized geometries. The essential ingredients of the methodology are: a Galerkin projection onto a low-dimensional space associated with a smooth "parametric manifold" - dimension reduction, an efficient and effective greedy sampling methods for identification of optimal and numerically stable approximations - rapid convergence, an a posteriori error estimation procedures - rigorous and sharp bounds for the functional outputs related with the underlying solution or related quantities of interest, like stress intensity factor, and Offline-Online computational decomposition strategies - minimum marginal cost for high performance in the real-time and many-query (e.g., design and optimization) contexts. We present several illustrative results for linear elasticity problem in parametrized geometries representing 2D Cartesian or 3D axisymmetric configurations like an arc-cantilever beam, a center crack problem, a composite unit cell or a woven composite beam, a multi-material plate, and a closed vessel. We consider different parametrization for the systems: either physical quantities - to model the materials and loads - and geometrical parameters - to model different geometrical configurations - with isotropic and orthotropic materials working in plane stress and plane strain approximation. We would like to underline the versatility of the methodology in very different problems. As last example we provide a nonlinear setting with increased complexity
    corecore