4,581 research outputs found

    Which Investments Improve Student Performance? The Impact of Extracurricular Activities, Paid Classes, and At-Home Internet Use on Student Performance in Secondary School

    Get PDF
    The importance of education is acknowledged by modern society. As more and more people are willing to invest in education to improve students’ performance, the question of which areas of investment contribute most strongly to better academic performance arises. Parents can choose to involve their children in extracurricular activities, or they can choose to pay for additional classes outside of regular schooling. In addition, the use of technology, or, more specifically, access to the Internet at home, is becoming more and more common, and its influence on student performance is a popular topic of study. In this paper, we use two experiments to uncover the factors that influence students’ performance in Math and Portuguese Language and to support strategies for investment in education

    Shrinking the Quadratic Estimator

    Full text link
    We study a regression characterization for the quadratic estimator of weak lensing, developed by Hu and Okamoto (2001,2002), for cosmic microwave background observations. This characterization motivates a modification of the quadratic estimator by an adaptive Wiener filter which uses the robust Bayesian techniques described in Strawderman (1971) and Berger (1980). This technique requires the user to propose a fiducial model for the spectral density of the unknown lensing potential but the resulting estimator is developed to be robust to misspecification of this model. The role of the fiducial spectral density is to give the estimator superior statistical performance in a "neighborhood of the fiducial model" while controlling the statistical errors when the fiducial spectral density is drastically wrong. Our estimate also highlights some advantages provided by a Bayesian analysis of the quadratic estimator

    HIV-1 Coreceptor Activity of CCR5 and Its Inhibition by Chemokines: Independence from G Protein Signaling and Importance of Coreceptor Downmodulation

    Get PDF
    AbstractHIV-1 infection requires the presence of specific chemokine receptors on CD4+ target cells to enable the fusion reactions involved in virus entry. CCR5 is a major fusion coreceptor for macrophage-tropic HIV-1 isolates. HIV-1 entry and fusion are mediated by the viral envelope glycoprotein (Env) and are inhibited by CCR5 ligands, but the mechanisms are unknown. Here, we test the role of G protein signaling and CCR5 surface downmodulation by two separate approaches: direct inactivation of CCR5 signaling by mutagenesis and inactivation of Gi-type G proteins with pertussis toxin. A CCR5 mutant lacking the last 45 amino acids of the cytoplasmic C-terminus (CCR5306) was created that was expressed on transfected cells at levels comparable to cells expressing CCR5 and displayed normal chemokine binding affinity. CCR5 ligands induced calcium flux and receptor downmodulation in cells expressing CCR5, but not in cells expressing CCR5306. Nevertheless, CCR5 or CCR5306, when coexpressed with CD4, supported comparable HIV-1 Env-mediated cell fusion. Consistent with this, treatment of CCR5-expressing cells with pertussis toxin completely blocked ligand-induced transient calcium flux, but did not affect Env-mediated cell fusion or HIV-1 infection. Also, pertussis toxin did not block chemokine inhibition of Env-mediated cell fusion or HIV-1 infection. However, chemokines inhibited Env-mediated cell fusion less efficiently for CCR5306than for CCR5. We conclude that the C-terminal domain of CCR5 is critical for G protein signaling and receptor downmodulation from the surface, but that neither function is required for CCR5 fusion coreceptor activity. The contrasting phenotypes of CCR5 and CCR5306suggest that coreceptor downmodulation and direct blockage of Env interaction sites both contribute to chemokine inhibition of HIV-1 infection

    Development of extinction imagers for the determination of atmospheric optical extinction: final report

    Get PDF
    The primary goals of this project for JTO and ONR (Grant N00014-07-1-1060) were to further develop Extinction Imagers for use in the ocean environment, and to extend the capabilities into the Short Wave IR (SWIR). Extinction Imaging is a method for determining the effective extinction coefficient over an extended path using a sensor at one end of the path. It uses calibrated imagers to acquire the relative radiance of a dark target near the other the end of the path and the horizon sky in the direction of the dark target. It is completely passive and thus covert, and the hardware is robust and relatively inexpensive. It uses rigorous equations, which determine the extinction coefficient from the measured apparent contrast of the radiance of the dark target with respect to the horizon sky. The project was very successful. We found that the ocean surface could readily be used as a dark target in red and SWIR wavelengths. Both the red and the SWIR measurement results were excellent for daytime. Comparisons with standard instruments, as well as uncertainty analysis, indicated that extinction imagers provide better measurements of the atmospheric extinction losses over extended paths than other methods of which we are aware. Our secondary goals were to address the night regime, and to address slanted paths above the horizontal. Regarding night, we found that the visible sensor acquired excellent data, but the ocean surface was not a good dark target in our wavelengths. Recommendations on the handling of night are given in the report. Regarding the lines of sight above the horizon, we developed a slant path algorithm that determines beam transmittance. It performed very well. Recommendations are made regarding integration of these techniques for military applications.Joint Technology Office via Office of Naval ResearchGrant N00014-07-1-106

    Analytic approximation and an improved method for computing the stress-energy of quantized scalar fields in Robertson-Walker spacetimes

    Get PDF
    An improved method is given for the computation of the stress-energy tensor of a quantized scalar field using adiabatic regularization. The method works for fields with arbitrary mass and curvature coupling in Robertson-Walker spacetimes and is particularly useful for spacetimes with compact spatial sections. For massless fields it yields an analytic approximation for the stress-energy tensor that is similar in nature to those obtained previously for massless fields in static spacetimes.Comment: RevTeX, 8 pages, no figure

    A powerful bursting radio source towards the Galactic Centre

    Full text link
    Transient astronomical sources are typically powered by compact objects and usually signify highly explosive or dynamic events. While radio astronomy has an impressive record of obtaining high time resolution observations, usually it is achieved in quite narrow fields-of-view. Consequently, the dynamic radio sky is poorly sampled, in contrast to the situation in the X- and gamma-ray bands in which wide-field instruments routinely detect transient sources. Here we report a new transient source, GCRT J1745-3009, detected in 2002 during a moderately wide-field radio transient monitoring program of the Galactic center (GC) region at 0.33 GHz. The characteristics of its bursts are unlike those known for any other class of radio transient. If located in or near the GC, its brightness temperature (~10^16 K) and the implied energy density within GCRT J1745-3009 vastly exceeds that observed in most other classes of radio astronomical sources, and is consistent with coherent emission processes rarely observed. We conclude that GCRT J1745-3009 is the first member of a new class of radio transient sources, the first of possibly many new classes to be identified through current and upcoming radio surveys.Comment: 16 pages including 3 figures. Appears in Nature, 3 March 200

    A simple technique for eliminating tracheal buckling on lateral neck roentgenograms

    Full text link
    Brief, gentle extrinsic pressure on the trachea at the level of the cricothyroid membrane during lateral roentgenography of the neck is suggested as a safe, simple, and reliable means of evaluating the retrotracheal pre-cervical soft tissues in infants and children.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46690/1/247_2004_Article_BF00972851.pd

    Three-Terminal Si-Based Negative Differential Resistance Circuit Element with Adjustable Peak-to-Valley Current Ratios Using a Monolithic Vertical Integration

    Get PDF
    Si-based resonant bipolar transistors are demonstrated by the monolithic vertical integration of Si-based resonant interband tunnel diodes atop the emitter of Si/SiGe heterojunction bipolar transistors ~HBTs! on a silicon substrate. In the common emitter configuration, IC versus VCE shows negative differential resistance characteristics. The resulting characteristics are adjustable peak-to-valley current ratios, including infinite and negative values, and tailorable peak current densities by the control of the HBT base current under room temperature operation. With the integrated RITD-HBT combination, latching properties which are the key operating principle for high-speed mixed-signal, memory, and logic circuitry, are experimentally demonstrated

    The host-galaxy response to the afterglow of GRB 100901A

    Get PDF
    For Gamma-Ray Burst 100901A, we have obtained Gemini-North and Very Large Telescope optical afterglow spectra at four epochs: one hour, one day, three days and one week after the burst, thanks to the afterglow remaining unusually bright at late times. Apart from a wealth of metal resonance lines, we also detect lines arising from fine-structure levels of the ground state of Fe II, and from metastable levels of Fe II and Ni II at the host redshift (z = 1.4084). These lines are found to vary significantly in time. The combination of the data and modelling results shows that we detect the fall of the Ni II 4 F9/2 metastable level population, which to date has not been observed. Assuming that the population of the excited states is due to the UV-radiation of the afterglow, we estimate an absorber distance of a few hundred pc. This appears to be a typical value when compared to similar studies. We detect two intervening absorbers (z = 1.3147, 1.3179). Despite the wide temporal range of the data, we do not see significant variation in the absorption lines of these two intervening systems.Comment: 17 pages, 9 figures. Accepted by Monthly Notices of the Royal Astronomical Society on Jan 11th 201
    • …
    corecore