749 research outputs found

    Steady streaming confined between three-dimensional wavy surfaces

    Get PDF
    We present a theoretical and numerical study of three-dimensional pulsatile confined flow between two rigid horizontal surfaces separated by an average gap h, and having three-dimensional wavy shapes with arbitrary amplitude σ h where σ ∼ O(1), but long-wavelength variations λ, with h/λ 1. We are interested in pulsating flows with moderate inertial effect arising from the Reynolds stress due to the cavity non-parallelism. We analyse the inertial steady-streaming and the second harmonic flows in a lubrication approximation. The dependence of the three-dimensional velocity field in the transverse direction is analytically obtained for arbitrary Womersley numbers and possibly overlapping Stokes layers. The horizontal dependence of the flow is solved numerically by computing the first two pressure fields of an asymptotic expansion in the small inertial limit. We study the variations of the flow structure with the amplitude, the channel’s wavelength and the Womersley number for various families of three-dimensional channels. The steady-streaming flow field in the horizontal plane exhibits a quadrupolar vortex, the size of which is adjusted to the cavity wavelength. When increasing the wall amplitude, the wavelengths characterizing the channel or the Womersley number, we find higher-order harmonic flow structures, the origin of which can either be inertially driven or geometrically induced. When some of the channel symmetries are broken, a steady-streaming current appears which has a quadratic dependence on the pressure drop, the amplitude of which is linked to the Womersley number

    Generalized Lagrangian Coordinates for Transport and Two-Phase Flows in Heterogeneous Anisotropic Porous Media

    Get PDF
    We show how Lagrangian coordinates provide an effective representation of how difficult non-linear, hyperbolic transport problems in porous media can be dealt with. Recalling Lagrangian description first, we then derive some basic but remarkable properties useful for the numerical com- putation of projected transport operators. We furthermore introduce new generalized Lagrangian coordinates with their application to the Darcy–Muskat two-phase flow models. We show how these generalized Lagrangian coordinates can be constructed from the global mass conservation, and that they are related to the existence of a global pressure previously defined in the literature about the subject. The whole representation is developed in two or three dimensions for numerical purposes, for isotropic or anisotropic heterogeneous porous media

    Spatially localized binary fluid convection in a porous medium

    Get PDF
    The origin and properties of time-independent spatially localized binary fluid convection in a layer of porous material heated from below are studied. Different types of single and multipulse states are computed using numer- ical continuation and the results related to the presence of homoclinic snaking of single and multipulse states

    Weak-inertial flow between two rough surfaces

    Get PDF
    “Oseen–Poiseuille” equations are developed from an asymptotic formulation of the three-dimensional Navier–Stokes equations in order to study the influence of weak inertia on flows between rough surfaces. The impact of the first correction on macroscopic flow due to inertia has been determined by solving these equations numerically. From the numerical convergence of the asymptotic expansion to the three-dimensional Navier–Stokes flows, it is shown that, at the macroscopic scale, the quadratic correction to the Reynolds equation in the weak-inertial regime vanishes generalizing a similar result in porous media

    Spatially localized magnetoconvection

    Get PDF
    Numerical continuation is used to compute branches of time-independent, spatially localized convectons in an imposed vertical magnetic field focusing on values of the Chandrasekhar number Q in the range 10 < Q < 103. The calculations reveal that convectons initially grow by nucleating additional cells on either side, but with the build-up of field outside owing to flux expulsion, the convectons are able to transport more heat only by expanding the constituent cells. Thus, at large Q and large Rayleigh numbers, convectons consist of a small number of broad cells

    Magnetohydrodynamic convectons

    Get PDF
    Numerical continuation is used to compute branches of spatially localized structures in convection in an imposed vertical magnetic field. In periodic domains with finite spatial period, these branches exhibit slanted snaking and consist of localized states of even and odd parity. The properties of these states are analysed and related to existing asymptotic approaches valid either at small amplitude (Cox and Matthews, Physica D, vol. 149, 2001, p. 210), or in the limit of small magnetic diffusivity (Dawes, J. Fluid Mech., vol. 570, 2007, p. 385). The transition to standard snaking with increasing domain size is explored

    Homoclinic snaking of localized states in doubly diffusive convection

    Get PDF
    Numerical continuation is used to investigate stationary spatially localized states in two-dimensional thermosolutal convection in a plane horizontal layer with no-slip boundary conditions at top and bottom. Convectons in the form of 1-pulse and 2-pulse states of both odd and even parity exhibit homoclinic snaking in a common Rayleigh number regime. In contrast to similar states in binary fluid convection, odd parity convectons do not pump concentration horizontally. Stable but time-dependent localized structures are present for Rayleigh numbers below the snaking region for stationary convectons. The computations are carried out for (inverse) Lewis number \tau = 1/15 and Prandtl numbers Pr = 1 and Pr >> 1

    Nonsnaking doubly diffusive convectons and the twist instability

    Get PDF
    Doubly diffusive convection in a three-dimensional horizontally extended domain with a square cross section in the vertical is considered. The fluid motion is driven by horizontal temperature and concentration differences in the transverse direction. When the buoyancy ratio N = -1 and the Rayleigh number is increased the conduction state loses stability to a subcritical, almost two-dimensional roll structure localized in the longitudinal direction. This structure exhibits abrupt growth in length near a particular value of the Rayleigh number but does not snake. Prior to this filling transition the structure becomes unstable to a secondary twist instability generating a pair of stationary, spatially localized zigzag states. In contrast to the primary branch these states snake as they grow in extent and eventually fill the whole domain. The origin of the twist instability and the properties of the resulting localized structures are investigated for both periodic and no-slip boundary conditions in the extended direction

    Nonlinear Marangoni convection in circular and elliptical cylinders

    Get PDF
    The spatial organization of single-fluid Marangoni convection in vertical cylinders with circular or elliptical horizontal cross section is described. The convection is driven by an imposed heat flux from above through Marangoni stresses at a free but undeformed surface due to temperature-dependent surface tension. The solutions and their stability characteristics are obtained using branch-following techniques together with direct numerical simulations. The changes in the observed patterns with increasing ellipticity are emphasized. In some cases, the deformation of the cylinder results in the presence of oscillations

    Spatially localized radiating diffusion flames

    Get PDF
    A simple model of radiating diffusion flames considered by Kavousanakis et al. (2013) [1] is extended to two spatial dimensions. A large variety of stationary spatially localized states representing the breakup of the flame front near extinction is computed using numerical continuation. These states are organized by a global bifurcation in space that takes place at a particular value of the Damköhler number and their existence is consistent with current understanding of spatial localization in driven dissipative systems
    corecore