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The origin and properties of time-independent spatially localized binary fluid convection in a layer of porous
material heated from below are studied. Different types of single and multipulse states are computed using numer-
ical continuation and the results related to the presence of homoclinic snaking of single and multipulse states.

Stationary spatially localized states are of great interest in the theory of pattern formation. Recently such
states have been found in several different types of convection, including binary fluid convection (1,2), convection
in an imposed magnetic field (6,7,11) and natural doubly diffusive convection (12,13,4,5,3). Similar states, localized in
the cross-stream direction, have been identified in plane Couette flow as well (15). Despite their physical difference
these systems have two properties in common: they are reversible in space, and exhibit bistability (i.e., there is a
parameter regime in which a trivial spatially homogeneous state coexists with a spatially periodic steady state).

In the standard picture of systems of this type on the real line spatially localized states first appear via a
bifurcation from the trivial state and do so simultaneously with the primary branch of spatially periodic states.
Typically there are two branches of spatially localized states that are produced, both symmetric under reflection
with either global maxima or global minima. These states are distinct, and are not related by symmetry. The
branches of localized states bifurcate in the same direction as the periodic states, i.e., subcritically, and are initially
unstable. With decreasing parameter the localized states grow in amplitude but shrink in extent; when the extent
of the localized state approaches one wavelength and the amplitude reaches that of the competing periodic state
the branch enters the so-called snaking or pinning region, and begins to ‘snake’ back and forth. As this happens
the localized state gradually adds rolls, symmetrically on either side, thereby increasing its length. As a result the
localized states high up the snaking branches resemble the finite amplitude spatially periodic state over longer and
longer lengths. Typically each snaking branch repeatedly gains and loses stability via saddle-node bifurcations,
producing an infinite multiplicity of coexisting stable states within the pinning region. Secondary bifurcations
to pairs of (unstable) branches of asymmetric drifting states are found in the vicinity of each saddle-node; these
branches resemble ‘rungs’ that connect the two snaking branches and are responsible for the ‘snakes-and-ladders’
structure of the localized states (8,10,9). This structure is typical of bistable systems with no additional symmetry,
such as natural doubly diffusive convection (5), although similar behavior is also found in systems with an additional
midplane reflection symmetry such as binary fluid convection (2), plane Couette flow (15) and binary fluid convection
in a porous medium (this study).

In this study we explore similar behavior in binary fluid convection in a porous medium, focusing not only
on the single pulse states whose behavior is described above, but also on multipulse states in which two or more
localized structures are present simultaneously. We find that these states snake too and that the possible behavior is
substantially richer than that of the single pulse states. Apart from the importance of porous medium convection in
various applications (14), the simplification of the equation of motion allows one to compute many more steady states
and do so in larger domains than in other problems of this type. This is, of course, essential for any investigation
of multipulse states. We do not consider time-dependent states.
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Figure 1: Bifurcation diagram showing some of the secondary branches of localized states connecting the various
periodic states. The insets show enlargements of the small amplitude behavior near onset and the termination of
the secondary branches near the saddle-nodes on P17 and P18. The snaking region near Ra = 53.5 is not resolved
on the scale of this plot. Parameters: τ = 0.5, S = −0.1.
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