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Abstract
Numerical continuation is used to compute branches of time-independent,
spatially localized convectons in an imposed vertical magnetic field focusing
on values of the Chandrasekhar number Q in the range 10< Q < 103. The
calculations reveal that convectons initially grow by nucleating additional cells
on either side, but with the build-up of field outside owing to flux expulsion, the
convectons are able to transport more heat only by expanding the constituent
cells. Thus, at large Q and large Rayleigh numbers, convectons consist of a
small number of broad cells.

1. Introduction

Convectons are spatially localized regions of convection embedded in a quiescent background.
States of this type were found in numerical studies of magnetoconvection, i.e. convection
in an imposed vertical magnetic field, in both two (Blanchflower 1999) and three spatial
dimensions (Blanchflower and Weiss 2002, Houghton and Bushby 2011), although there is
evidence for similar states in earlier work on two-dimensional (2D) natural convection in a
vertical slot (Ghorayeb and Mojtabi 1997). The existence and stability of these structures have
elicited considerable interest in recent years (Knobloch 2008). In a recent paper, Lo Jacono
et al (2011) used numerical continuation to compute branches of 2D magnetohydrodynamic
convectons in a periodic domain with stress-free, fixed temperature boundary conditions at
the top and bottom of a horizontal layer of a conducting Boussinesq fluid, focusing on the
case Q = 4, where the Chandrasekhar number Q provides a dimensionless measure of the
strength of the imposed magnetic field. This relatively small value was selected since in this
case no overstability is present for the values of the magnetic Prandtl number (ζ = 0.1 and
ζ = 0.5) used in the computations. These values of ζ bracket the transition from subcritical
to supercritical periodic convection, and allowed us to study the changes in the properties
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of magnetohydrodynamic convectons as the interval of coexistence between the conduction
state and spatially periodic convection shrinks and eventually disappears. In contrast to other
convecton-bearing systems Lo Jacono et al (2011) found that the convectons persisted into
the supercritical regime and, following Cox and Matthews (2001), attributed this fact to the
presence of a conserved quantity, the imposed magnetic flux.

In this paper, we use the same procedure to extend the results of Lo Jacono et al (2011)
to larger values of Q. Specifically, we report here on the results obtained for (i) Q = 100,
(ii) Q = 400 and (iii) Q = 1000, all with ζ = 0.5 and σ = 1, where σ denotes the Prandtl
number. For this parameter choice, the width of the diffusive boundary layers, measured by
the Péclet and magnetic Reynolds numbers Pe ≡ Uh/κ , Rem ≡ Uh/η, remains of order h,
the layer depth, provided that the imposed Rayleigh number Ra remains of order Rac, the
critical Rayleigh number for the onset of convection. Here κ and η are the thermal and ohmic
diffusivities and U denotes a characteristic convective speed. However, with increasing values
of Ra the boundary layers become thinner and thinner, leading to a substantial increase in
the resolution requirements of our spectral element continuation code (Assemat et al 2008,
Bergeon and Knobloch 2008). All our computations are carried out in a periodic domain with
aspect ratios 0 = 10λc or 0 = 20λc, where λc is the convection wavelength at Ra = Rac.

The larger values of Q considered here are responsible for two important differences
from the Q = 4 case considered by Lo Jacono et al (2011). Specifically, the onset of steady
convection is delayed to larger values of Ra although the bifurcation to steady convection
remains supercritical (see equation (10)). In addition, the onset of steady convection is
preceded by a number of Hopf bifurcations to modes with other horizontal wavenumbers.
We do not compute the resulting branches of standing and traveling waves; see Weiss (1981),
Knobloch and Proctor (1981), Knobloch et al (1981), and Dangelmayr and Knobloch (1986)
for further discussion. Owing to the cost involved we do not continue the eigenvalues
describing the stability of the convectons, but expect, following Blanchflower (1999), that
the solutions we compute will be stable in the vicinity of the minimum Rayleigh number for
the existence of convectons. As discussed further below, this Rayleigh number is a strong
function of the length of the domain used for the computations. This is in turn a consequence
of the conservation of magnetic flux across the layer.

Convection in an imposed magnetic field is described by the dimensionless equations

ut + (u · ∇)u = −∇P + σ RaT ẑ + σζQ(∇ × B)× B + σ∇
2u, (1)

Tt + (u · ∇)T = ∇
2 T, (2)

Bt + (u · ∇)B = (B · ∇)u + ζ∇2B, (3)

together with the incompressibility condition

∇ · u = 0. (4)

Here u is the velocity, P is the pressure, T is the temperature and B is the magnetic field, and
the equations have been nondimensionalized with respect to the thermal diffusion time h2/κ

in the vertical. The system is characterized by four dimensionless parameters, the Rayleigh
number Ra ≡ α1T h3/κν measuring the strength of the thermal forcing (i.e. temperature
difference 1T ), the Chandrasekhar number Q ≡ B2

0 h2/µ0ρην measuring the strength of the
ambient magnetic field B0 and the two Prandtl numbers σ = ν/κ and ζ = η/κ . Here ν is the
kinematic viscosity.

In two dimensions it is convenient to rewrite these equations in terms of the temperature
departure θ from the conduction profile, T = 1 − z + θ , and the flow-induced magnetic field



perturbation b from the imposed vertical field, B = ẑ + b. With u ≡ ∇ ×ψ ŷ and b ≡ ∇ × Aŷ
these equations take the form

∇
2ψt + J (ψ,∇2ψ)= σ Raθx + σζQ J (x + A,∇2 A)+ σ∇

4ψ, (5)

θt + J (ψ, θ)= ψx + ∇
2θ, (6)

At + J (ψ, A)= ψz + ζ∇2 A. (7)

We study these equations with stress-free fixed temperature boundary conditions

ψ = ψzz = θ = 0 on z = 0, 1, (8)

and for the magnetic field we take the force-free boundary conditions

Az = 0 on z = 0, 1. (9)

In addition, we impose periodic boundary conditions in the horizontal with period 0. With
these boundary conditions the quantity Ā ≡ 0−1

∫ 0
0

∫ 1
0 A(x, z, t) dx dz remains constant in

time.
These equations have a trivial homogeneous solution (ψ, θ, A)= (0, 0, 0) corresponding

to pure thermal conduction. Linear stability theory shows that this state loses stability with
respect to exponentially growing disturbances with wavenumber k when Ra reaches Ra(k)=

(p3/k2)[1 + (π2/p2)Q], where p ≡ π2 + k2. The critical Rayleigh number Rac ≡ Ra(kc) and
the wavenumber kc of the critical disturbance are obtained by minimizing the onset Rayleigh
number with respect to k. Neither depends on the parameters ζ and σ . Classical theory shows
that at Ra = Rac a steady-state bifurcation creates a branch of spatially periodic states with
wavenumber kc (equivalently, wavelength λc) that bifurcates subcritically when

1 +
π2

p2

[
1 +

2π2(p − 2π2)

p(p −π2)

1

ζ 2

]
Q < 0 (10)

and supercritically otherwise (Weiss 1981, Knobloch et al 1981). Moreover, when
condition (10) holds and the problem is formulated on the real line, this instability gives rise,
in addition, to two families of subcritical branches of spatially localized states of opposite
parity under reflection in a vertical plane through their midpoint. Each solution type can, in
addition, be reflected in the layer midplane and/or translated horizontally to generate other
members of each family (Lo Jacono et al 2010, Mercader et al 2011).

We mention that the conduction state loses stability with respect to oscillations at
Ra(k)= σ−1(p3/k2)(σ + ζ )[(1 + ζ )+ σζ(π2/p2)Q/(1 + σ)], a quantity that is minimized by
taking k = kH. The corresponding Rayleigh number and oscillation frequency will be referred
to as RaH, ωH, respectively, where ω2

H = (pH/k2
H)[−ζ

2 + (1 − ζ )σζ(π2/p2
H)Q/(1 + σ)].

2. Results

2.1. Q = 100

For Q = 100, linear theory in an infinite domain yields Rac ≈ 2653.7, kc ≈ 3.7015,
independently of the value of ζ , while the first Hopf bifurcation from the conduction state
occurs at Ra = RaH ≈ 2429.2, with critical wavenumber kH ≈ 2.7561 and frequency ωH ≈

6.8636. Since 0 = 10λc, where λc ≡ 2π/kc, the steady-state instability sets in at Ra = Rac

and gives rise to a (supercritical) spatially periodic state we call P10, consisting of 20 counter-
rotating rolls per period 0. The steady, spatially localized, states of interest here bifurcate
from this state in a secondary bifurcation that takes place already at small amplitude.
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Figure 1. (a) Bifurcation diagram for Q = 100 in a 0 = 10λc domain showing the energy E as a
function of the Rayleigh number Ra for the periodic branch P10 and the branches of even (L+,
dashed line) and odd (L−, solid line) parity convectons. (b) Enlargement of (a).

Figure 1 shows the kinetic energy E ≡ (1/2)
∫ 0

0

∫ 1
0 |u|

2 dx dz as a function of the
Rayleigh number Ra for the periodic state P10, together with a pair of spatially localized
states of even (L+, dashed line) and odd (L−, solid line) parity. This representation does not
distinguish between states related by reflection symmetry in the midplane or by translations.
The P10 solutions undergo a secondary bifurcation already at small amplitude through
an instability first identified by Matthews and Cox (2000). This bifurcation is strongly
subcritical and generates two pairs of branches of opposite-parity spatially localized structures
(figure 1(b)), exactly as in the case Q = 4 (Lo Jacono et al 2011). These branches are initially
exponentially close and the corresponding structures are weakly localized and unstable.
However, with increasing amplitude (decreasing Ra) the structures rapidly localize before
turning around in saddle node bifurcations and beginning to grow in length by nucleating new
convection cells at either end. In the following, we denote the leftmost saddle node on each
branch by Ra = Ra∗

odd/even.
During this growth process the midplane magnetic potential A(x, z = 1/2) develops

a nonzero slope which remains almost constant in the center of the structure despite the
changing Rayleigh number and the growing number of rolls on either side. The rolls imprint
a staircase structure on this overall slope, by an essentially kinematic flux expulsion process
elucidated by Weiss (1966), and the overall appearance of A(x, z = 1/2) is almost identical
for both even and odd states. This is a consequence of the fact that the cells expel magnetic
field regardless of their direction of rotation. Thus a churning array of cells expels field to
the boundary of the array regardless of whether the outermost cells rotate in the same or
opposite directions. The mean slope of A(x, 1/2) represents reduction (negative slope) in the
vertical magnetic field within the structure and enhancement (positive slope) outside (figures 2
and 3). Thus the resulting vertical magnetic field has an essentially piecewise constant profile:
reduced within the structure, except at cell boundaries, and enhanced outside.

The growth process manifests itself in a series of loops in E as R increases (figure 1).
These loops are associated with the nucleation of additional cells as the number of cells within
the convecton grows (figures 2 and 3). The origin of the loops themselves can be traced to a
gradual increase in the wavelength of the cells within the convecton as Ra increases—such
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Figure 2. (a) Bifurcation diagram for Q = 100 in a 0 = 10λc domain showing details of the
loop structure in figure 1 for even (solid line) and odd (dashed line) convectons. (b) Even parity
convectons at the locations indicated in (a). Top panels: contours of the streamfunction ψ(x, z).
Bottom panels: the magnetic potential A(x, 1/2) (dashed profile) and the corresponding vertical
magnetic field B(x, 1/2)≡ 1 + Ax (x, 1/2) (solid profile), both at midplane z = 1/2.
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Figure 3. (a) Bifurcation diagram for Q = 100 in a 0 = 10λc domain showing details of the
loop structure in figure 1 for odd (solid line) and even (dashed line) convectons. (b) Odd parity
convectons at the locations indicated in (a). Top panels: contours of the streamfunction ψ(x, z).
Bottom panels: the magnetic potential A(x, 1/2) (dashed profile) and the corresponding vertical
magnetic field B(x, 1/2)≡ 1 + Ax (x, 1/2) (solid profile), both at midplane z = 1/2.

an increase is possible because the convectons are localized—followed by a decrease in
wavelength once new cells nucleate at a saddle node on the right (figures 2 and 3). It is as if the
new cells, one on each side, squeeze the convecton between them. This effect grows as the new
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Figure 4. Bifurcation diagram for Q = 400 in a (a) 0 = 10λc, (b) 0 = 20λc domain showing the
energy E as a function of the Rayleigh number Ra for the periodic branch P10 (P20) and the
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cells grow to their saturated amplitude, a process that takes place along the lower portion of
each loop. Beyond the saddle node on the left all the cells within the convecton are of the same
strength and the wavelength starts to increase again. Thus, despite the increase in the number
of cells the convectons along the lower portion of each loop are shorter and hence occupy a
smaller fraction of the domain than prior to the nucleation event, resulting in decreased kinetic
energy E (figures 2 and 3). This process repeats as Ra increases with the loops getting larger
as the associated changes in energy become larger, before the domain is full. Once enough
space is not available to insert new cells on either side, the structure ceases to grow, and
only the vigor of the convecting cells increases with further increase in Ra (figure 1(a)). The
resulting states resemble the defect states studied elsewhere (Bergeon and Knobloch 2008,
Mercader et al 2009) and the resulting structure resembles slanted snaking (Firth et al 2007,
Dawes 2008).

2.2. Q = 400

With increasing Q the number of loops gradually decreases. For example, when 0 = 10λc

and Q = 250 (not shown) only two loops are present on each convecton branch, while
only one is present when Q = 400 (figure 4(a)). This fact implies a dramatic change in
the convecton growth process since the presence of loops indicates nucleation of new cells.
Thus the convecton must manage to transport more and more heat as the Rayleigh number
increases without adding new cells. To see how this is possible we now present the results for
Q = 400. For this value of Q linear theory yields Rac ≈ 7185.9, kc ≈ 4.7942, independently
of the value of ζ , while the first Hopf bifurcation from the conduction state occurs already at
Ra = RaH ≈ 4658.9, with critical wavenumber kH ≈ 3.4395 (for ζ = 0.5, σ = 1).

Figures 5 and 6 show that for Q = 400 the vertical magnetic field, B(x, 1/2), has
a more nonlinear, square-wave profile in the saturated state. Indeed, the profiles are no
longer monotonic and the slight dips on either side of an upflow or a downflow are the
result of advection of the field by the rising or falling plume. A careful examination of the
solution profiles along the remaining loop reveals that the wavelength is no longer selected
by the value of Ra alone. Instead figures 5 and 6 reveal a significant dependence on the
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Figure 5. (a) Bifurcation diagram for Q = 400 in a 0 = 10λc domain showing details of the loop
structure in figure 4(a) for even (solid line) and odd (dashed line) convectons. (b) Even parity
convectons at the locations indicated in (a). Top panels: contours of the streamfunction ψ(x, z).
Bottom panels: the magnetic potential A(x, 1/2) (dashed profile) and the corresponding vertical
magnetic field B(x, 1/2)≡ 1 + Ax (x, 1/2) (solid profile), both at midplane z = 1/2.
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Figure 6. (a) Bifurcation diagram for Q = 400 in a 0 = 10λc domain showing details of the loop
structure in figure 4(a) for odd (solid line) and even (dashed line) convectons. (b) Odd parity
convectons at the locations indicated in (a). Top panels: contours of the streamfunction ψ(x, z).
Bottom panels: the magnetic potential A(x, 1/2) (dashed profile) and the corresponding vertical
magnetic field B(x, 1/2)≡ 1 + Ax (x, 1/2) (solid profile), both at midplane z = 1/2.

amplitude of state, with the low-energy state having a substantially shorter wavelength than
the large-amplitude states even at comparable Rayleigh numbers. The figures also reveal
a considerable dependence of the flux expulsion process on the amplitude of the localized
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Figure 7. Profiles for even and odd convectons for (a–b) Q = 100, 0 = 10λc and (c–d) Q = 400,
0 = 10λc at the Rayleigh numbers indicated, showing large wavelength nearly periodic structures
filling the domain at large Ra when Q is also large.

structures, as measured by the slope of A(x, z = 1/2) outside the structure (dashed profiles),
with fully developed convectons much more efficient at flux expulsion. This is primarily the
consequence of a larger magnetic Reynolds number Rem. The increased magnetic field outside
the convecton in turn suppresses the nucleation of new cells and leads to a new growth process
as Ra increases. Thus flux conservation leads to suppression of nucleation. For Q = 400 this
occurs after the even convecton has grown to four cells and the odd convecton to three cells
(figures 5 and 6) as expected from the presence of a single loop on each branch. Instead one
finds that beyond the loop the width of the individual cells in each of these states begins to
increase monotonically with increasing Ra until the domain is almost full. This new growth
process thus results in a cellular state with a relatively large wavelength (figure 7), with defects
or holes separated by distance 0.

To confirm this picture we have recomputed our Q = 400 results on a domain with
0 = 20λc. Figure 4(b) shows the presence of two loops on the branch of even convectons and
three loops on the branch of odd convectons instead of one loop on each branch, and indeed
the convectons now consist of six cells (even) or seven cells (odd) when the loops cease and
the existing cells start to stretch (not shown). These results confirm that the transition from
nucleation of new cells to the stretching of existing cells is triggered by a critical strength of
the ambient magnetic field.

In figure 7, we compare the large Rayleigh number Q = 400, 0 = 10λc solutions with the
corresponding solutions for Q = 100, 0 = 10λc. We see that the wavelength of the structure
when Q = 400 is much larger than when Q = 100 but that it remains uniform even at
Ra ∼ 9000. At these large values of Ra the solution branches increase monotonically, much
as in figure 4(a), with no additional features.

2.3. Q = 1000

For Q = 1000 linear theory yields Rac ≈ 15207, kc ≈ 5.6842, independently of the value of ζ ,
while the first Hopf bifurcation from the conduction state occurs already at Ra = RaH ≈

8415.3, with critical wavenumber kH ≈ 4.0691 (for ζ = 0.5, σ = 1).
For this large value of Q the behavior of the convecton branches L±

10 and L±

20 is
considerably different (figure 8). The regular looping seen at smaller values of Q is now
absent and there are substantial differences in the behavior of the odd and even convectons.
The results are also sensitive to the domain length 0 with the leftmost saddle nodes shifting
towards smaller Rayleigh numbers as the domain increases. This is again a consequence of
flux conservation. On smaller domains flux conservation increases the magnetic field strength
outside the convecton, thereby limiting convection to larger Rayleigh numbers than in larger
domains. Thus for large Q the first saddle node for odd convections is further to the left than
for even convectons.
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Figure 9 shows sample solutions at the left saddle nodes along (a) L+
20 and (b) L−

20 in
a 0 = 20λc domain. As shown in figure 8(b) the L+

20 branch goes through a loop at small
amplitude after which the solution consists of four cells. However, near the spike that follows
(this spike is clearly visible in figure 8(b)), the even parity solution briefly splits into a bound
state of two oppositely oriented single-cell convectons before recombining into a four-cell
state in which the outer cells retain their dominance. With increasing amplitude (figure 8(c))
the inner cells grow in both amplitude and wavelength, forming, by the time the leftmost
saddle node is reached, a state consisting of four similar cells. At this point the cells start
to stretch, resulting in the four-cell state shown in figure 9(a) at Ra = 12 187. In contrast
to the even parity states, the energy of the odd parity states L−

20 grows much more slowly
(figure 9(b)). These states undergo only a single saddle node at which the solution takes the
form of a single convecting cell. With increasing amplitude the branch L−

20 turns around and
the solution gradually adds narrow convection cells on either side, without exhibiting either



Figure 9. Solutions when Q = 1000, 0 = 20λc . (a) Streamfunction at left saddle nodes along
the L+

20 branch (Ra ≈ 11 880, 7906, 8360, 6701, 6717) and at large Ra (Ra = 12 187). (b)
Streamfunction at the left saddle node along the L−

20 branch (Ra ≈ 5612), and at large Ra
(Ra = 15 039). In each case the kinetic energy E increases from the bottom to the top.

additional loops or additional saddle nodes. This behavior, already seen when Q = 4 (Lo
Jacono et al 2011), resembles the ‘smooth snaking’ first described in the context of a nonlocal
oscillon model by Dawes and Lilley (2010). The resulting solution, shown in figure 9(b) at
Ra = 15 039, resembles the narrow convection cells traditionally expected of convection in
a strong magnetic field (Julien et al 1999, Matthews 1999), but differs dramatically from the
corresponding large-amplitude even state in figure 9(a).

2.4. Location of the leftmost saddle nodes

In figure 10, we show the location of the leftmost saddle nodes, Ra = Ra∗

odd/even, on the
branches of odd and even convectons for different values of Q in the range 1006 Q 6 1000
computed for 0 = 20λc. The states corresponding to these saddle nodes are well-localized
convectons consisting of one or two cells only. In contrast to the suggestion of Dawes (2007)
based on the results in domains with 0 = 6 and 0 = 10, i.e. for substantially smaller domains
than in this work, we do not see a 0-independent power law dependence on Q. Our
computations suggest (figure 8) that the location of the leftmost saddle nodes is in fact a
sensitive function of the aspect ratio 0 even for the relatively large domains employed in our
computations. This is a consequence of flux conservation, which plays a fundamental role in
finite domains even for nominally localized structures (Lo Jacono et al 2011). Despite this
difference we expect to find stable convectons above and close to the saddle node lines shown
in the figure, as found by Blanchflower (1999) and confirmed by Dawes (2007) using direct
numerical simulations.

3. Discussion

In this paper, we have extended the results obtained by Lo Jacono et al (2011) for
magnetoconvection with Q = 4 to substantially larger values of Q. In order to reduce
resolution requirements we used the magnetic Prandtl number ζ = 0.5 and considered
periodic domains 0 = 10λc and 0 = 20λc with 10 and 20 critical wavelengths, respectively.
For these parameter values the periodic state bifurcates supercritically. Despite this, spatially
localized states of odd and even parity are present for Rayleigh numbers below Ra = Rac,
indeed substantially below Ra = Rac. Although we have presented detailed results only
for Q = 100, 400 and 1000 we have performed similar computations for a range of values
of Q in the range 106 Q 6 1000. These suggest that there are two qualitatively distinct
types of behavior. For 106 Q 6 100 the system behaves much as shown in figures 1–3 with
orderly growth of the localized structure that manifests itself in the presence of loops in the
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Figure 10. The location in a log–log plot of the leftmost saddle nodes Ra = Ra∗
even for even

convectons (open circles) and Ra = Ra∗

odd for odd convectons (solid squares) as functions of Q,
computed with 0 = 20λc.

energy E . In this regime the effects of flux conservation are limited to the regime in which
the convectons almost fill the entire domain (figures 7(a) and (b)). For larger Q these loops
gradually disappear, as the build-up of the magnetic field outside the structure suppresses the
nucleation of new cells on either side. We conjectured that in larger domains the suppression
of nucleation will be delayed until the ambient magnetic field reaches the strengths at which
nucleation is suppressed in domains with aspect ratio 0 = 10λc. This conjecture is confirmed
in figure 4(b), which reveals the presence of three loops when 0 = 20λc, all other parameters
remaining the same. Beyond this point the cells must broaden in order to carry the heat that is
supplied.

The appearance of broader cells within the convectons as Q increases shows that
extrapolation of linear theory predictions to strongly nonlinear solutions is dangerous—linear
theory predicts that the wavelength of convection cells varies with Q as Q−1/6 and hence that
cells become narrower as the magnetic field strength increases. For the largest magnetic field
strengths examined, Q = 1000, we found narrow cell convectons at large Rayleigh numbers to
be of odd parity only, with the corresponding even parity states consisting of a small number
of broad cells. It is possible, but remains unproven, that for still larger values of Q these broad
cell states undergo a transition to narrow cells with a concomitant decrease in slope of E(Ra)
owing to increased viscous dissipation.

Based on earlier results with Q = 4 we conjecture that similar results to those reported
here will be obtained for smaller values of the diffusivity ratio ζ . For ζ � 1 the bifurcation
to periodic convection becomes strongly subcritical but since the convectons reported here
are already strongly subcritical we anticipate little qualitative effect on these states. However,
since the magnetic boundary layers become thinner and thinner as ζ decreases, we expect flux
expulsion to be more complete at any given Rayleigh number, and hence expect the leftmost
saddle nodes to shift to yet smaller values of Ra.
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