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We present a theoretical and numerical study of three-dimensional pulsatile confined
flow between two rigid horizontal surfaces separated by an average gap h, and
having three-dimensional wavy shapes with arbitrary amplitude σh where σ ∼ O(1),
but long-wavelength variations λ, with h/λ� 1. We are interested in pulsating flows
with moderate inertial effect arising from the Reynolds stress due to the cavity non-
parallelism. We analyse the inertial steady-streaming and the second harmonic flows in
a lubrication approximation. The dependence of the three-dimensional velocity field in
the transverse direction is analytically obtained for arbitrary Womersley numbers and
possibly overlapping Stokes layers. The horizontal dependence of the flow is solved
numerically by computing the first two pressure fields of an asymptotic expansion
in the small inertial limit. We study the variations of the flow structure with the
amplitude, the channel’s wavelength and the Womersley number for various families
of three-dimensional channels. The steady-streaming flow field in the horizontal plane
exhibits a quadrupolar vortex, the size of which is adjusted to the cavity wavelength.
When increasing the wall amplitude, the wavelengths characterizing the channel or
the Womersley number, we find higher-order harmonic flow structures, the origin
of which can either be inertially driven or geometrically induced. When some of
the channel symmetries are broken, a steady-streaming current appears which has a
quadratic dependence on the pressure drop, the amplitude of which is linked to the
Womersley number.

1. Introduction
Oscillating flows between non-parallel walls display an essential feature associated

with nonlinear effects: the existence of a steady-streaming current. As synthetically
expressed by Hall (1974), an oscillatory viscous flow over a curved surface sets up a
Reynolds stress associated with the oscillatory motion in the Stokes layer. It generates
a steady velocity persisting away from the layer because of the viscous effect. The
Stokes layer can be induced either by wall or pressure oscillations, and it has been
studied for small-amplitude oscillations in various configurations including concentric
cylinders (Duck & Smith 1979), parallel plates (Selderov & Stone 2001; Waters 2001)
and an elliptical cylinder (Padmanabhan & Pedley 1987). The pulsatile flow in weakly
perturbed axisymmetric tubes has been considered (Manton 1971; Grotberg 1984),
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Figure 1. Two-dimensional sketch of the parameters and coordinates associated with the
wavy surfaces considered. The two bold-faced vertical lines indicate the X-positions where a
vertically and transversely homogeneous oscillating pressure difference ∆P eiωt is applied.

and the problem has been extended to wavy axisymmetric tubes (Ralph 1986) or
non-axisymmetrically perturbed tubes (Ramachandra Rao & Devanathan 1973; Hall
1974). Oscillating flows confined between patterned surfaces have received much
attention. Numerical simulations have been used to investigate moderate inertial
pulsatile flow in two-dimensional wavy channels (Sobey 1980a,b; Nishimura et al.
1989). Many other studies have been carried out in large inertial regimes exhibiting
a wide range of dynamic behaviour. The present work focuses on a moderate inertial
effect and is not concerned with the hydrodynamic instabilities that generally appear
at large Reynolds number. We rather concentrate on the forced periodic response to
an imposed pressure oscillation. Whilst non-inertial flow between elliptic annuli has
been recently considered by Gupta, Poulikakos & Kurtcuoglu (2008) in the context
of cerebrospinal liquid (CSL), we investigate here the influence of inertial effects due
to non-parallelism. The intrathecal space, which is the sheath surrounding the spinal
cord, has previously been approximated as the gap between two coaxial cylinders
(Gupta et al. 2008). However, the ratio of the gap width h to the diameter of the inner
cylinder D is small; typically h/D is 1/4 to 1/3. Therefore, in this paper we consider
a representation of the gap in which the mean curvature is neglected. The boundaries
of the gap are represented by surfaces that deviate around two parallel planes (rather
than two concentric cylinders). Hence, developing the azimuthal direction into a
transverse Cartesian direction is an interesting approximation to consider.

Some additional curvature effects are similarly neglected, as discussed in § 2.
Furthermore, we consider that the ratio of the average gap size h to its spatial
longitudinal variations λ is small, which is worth considering for intrathecal space in
humans, where there are a millimetric gap h and centimetric longitudinal variations
λ, so that h/λ∼ 1/10 (Nelissen 2008) (this parameter is called δ by Hall 1974).
Furthermore, intrathecal space might display important gap variations, as large as
the gap itself, so that at some particular points the cavity is almost closed. Our problem
is then associated with a geometry having an average gap h, with amplitude variations
σh over long-wave distances λ, with h/λ� 1 and σ ∼ O(1), as sketched in figure 1.

In this specific context, where inertia is moderate, the reduced Reynolds number
hRe/λ is less than 1. The reduced Reynolds number is the product of the Reynolds
number Re, brought about by the applied pressure difference, and the aspect ratio,
and will be referred to as a small parameter hRe/λ� 1. However, there is general
agreement that the validity range of this approximation covers much broader values
of this parameter, i.e. for values as large as hRe/λ∼ 10, as found by Lo Jacono,
Plouraboué & Bergeon (2005).

A second dimensionless quantity, the Womersley number α, defined by α2 = ωh2/(ν),
is based on the forcing frequency ω, the viscous relaxation time h2/ν related to the



432 R. Guibert, F. Plouraboué and A. Bergeon

fluid kinematic viscosity ν and the typical gap h. The Womersley number can be
either small or large, as in the case of the CSL flow investigated by Gupta et al.
(2008).

For axisymmetric pipes with small constrictions, the leading-order flow is
axisymmetric and can be described by a Womersley-dependent stream function.
Successive inertial contributions can then be computed, but they essentially differ in
the two limit cases α � 1 and α � 1 with α � 1/σ . In the limit of small Womersley
numbers, inertial corrections can be estimated everywhere inside the pipe using a
regular expansion in α, whereas in the large-Womersley-number regime, a Stokes
layer of thickness ∼1/α develops near the pipe walls (Hall 1974; Grotberg 1984). In
this case, it is necessary to match the Stokes layer with the outer core region, which
then separates the steady-streaming contribution into two distinct regions.

In this paper we improve the analysis of weakly inertial pulsatile flows in two ways.
Firstly, we extend the class of geometries because we only require the gap of the
channel to have long-wavelength variations. In particular, our results do not only
apply to variations of small amplitude. Therefore, our analysis applies to a large
number of configurations, including those encountered in cerebrospinal flow around
the spinal cord, for which the flow is confined along one direction with possibly local
arbitrarily small gaps, whilst spatial variations in the other two directions occur over
a similar long-wavelength λ under the assumption that h/λ� 1. Hence, as opposed
to previous works where the two geometrical parameters σ and ε were assumed
to be small, only ε is considered small here. Within this lubrication constraint,
any arbitrary aperture variation is potentially addressed. One unavoidable outcome
of such a general framework is the necessity for some numerical computation to
solve the leading-order lubrication flow and any further inertial perturbation. Our
analysis, however, shows that the numerical cost is only that of solving a stationary
two-dimensional Poisson problem and it is a drastic simplification of the initial three-
dimensional time-dependent problem with, possibly, thin Stokes layers inside the gap
thickness.

Secondly, we address the computation of the steady-streaming flow associated with
either a small or a large Womersley number within the same formulation, so that any
arbitrary intermediate value (most physiologically meaningful values are indeed for
α within the range 0.5–3) can be covered by our formulation. This goal is different
from that previously achieved by Hall (1974) and Grotberg (1984) since we avoid
solving the inner and outer Stokes layer regions separately. Our analytical solution
captures both regions inside the gap, which is a nice feature of the approach when
Stokes layers overlap for Womersley numbers of order 1.

The paper is organized as follows. The dimensionless formulation and the governing
equations are introduced in § 2. An asymptotic analysis of the flow in the weak inertia
regime is performed in § 3. This analysis brings to the fore a boundary layer type
of pressure field which is uniform along the vertical direction and has horizontal
variations necessitating some two-dimensional numerical computation, as described
in § 4. These pressure numerical computations allow the complete velocity field to be
reconstructed, some examples of which are shown in § 5. Finally, the global pressure–
flux relation is analysed in greater detail in § 5.2.2.

2. Governing equations
We study the incompressible flow between two rigid surfaces defined by z −

z1(x, y) = z − z2(x, y) = 0. Here x and y are defined as the horizontal coordinates
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and z as the vertical coordinate (although gravity is neglected). We introduce the
aperture ∆z = z2 − z1 and assume that ∆z > 0. The two functions z1 and z2 are
smooth continuous λ-periodic functions of x and y and we introduce the aspect ratio
ε = 2πh/λ, where h is the averaged aperture.

The horizontal lengths are non-dimensionalized with λ/2π and the transverse
(vertical) length with h. Hereafter, dimensionless lengths X =2πx/λ, Y = 2πy/λ and
z = z/h will be used to reinforce the fact that the two scales differ by ε. The
unscaled vertical coordinate Z = 2πz/λ is thus Z = εz. For numerical convenience
associated with the computations of § 4, we set max(X, Y ) = 2π, whereas z ∼ O(1).
The flow is driven by an imposed pressure difference in the X direction oscillating
periodically in time. Its amplitude ∆P is used to build the dimensionless pressure
p and its period of oscillation 1/ω is used for the dimensionless time. The
horizontal velocity components are scaled by a viscous velocity vµ = 2πh2∆P/µλ
based on the applied pressure gradient, where µ is the dynamic viscosity. Because
of the incompressibility constraint and the different scaling in space, the vertical
component of the velocity is non-dimensionalized by εvµ = (2π)2h3∆P/µλ2. This
dimensionless formulation brings to the fore the lubrication Reynolds number
εRe = ε ((2π)h2∆P/µλ) (hρ/µ) = (2π)2ρ∆Ph4/µ2λ2 and the Womersley number
α defined by α2 = ωh2/ν. Note that εRe and α are free parameters and can
be independently assigned to a prescribed value. Using t , p and U = (u, v, εw)
for the dimensionless time, pressure and velocity, respectively, and neglecting
O(ε2, ε3Re, ε2α2) terms, body forces and gravity effects, the dimensionless Navier–
Stokes equations read

α2 ∂tu + εRe

(
u

∂u

∂X
+ v

∂u

∂Y
+ w

∂u

∂z

)
= − ∂p

∂X
+

∂2u

∂z2
,

α2 ∂tv + εRe

(
u

∂v

∂X
+ v

∂v

∂Y
+ w

∂v

∂z

)
= − ∂p

∂Y
+

∂2v

∂z2
,

0 = −∂p

∂z
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

The incompressibility constraint gives

∂u

∂X
+

∂v

∂Y
+

∂w

∂z
= 0. (2.2)

No-slip boundary conditions are used along the two channel boundaries defined by
z − z1(X, Y ) = 0 and z − z2(X, Y ) = 0. This gives

U(X, Y, z = z1) = U(X, Y, z = z1) = 0, (2.3)

where z1 and z2 stand for the dimensionless version of z1 and z2. The set of equations
(2.2)–(2.3) are, however, difficult to use with the asymptotic sequence developed below,
which is well known in lubrication theory. This is because boundary conditions (2.3)
give two independent conditions to be satisfied, while the incompressibility condition
(2.2) to be considered for solving the third component of velocity w just requires
one condition when the first-order derivative of w is integrated. This difficulty can be
overcome by considering a suitable coordinate system, which proves to be as simple to
use as Cartesian coordinates in a long-wavelength asymptotic analysis. An interesting
improvement can then be obtained in the following analysis, when it is understood that
the boundary conditions can be transformed into a single antisymmetric condition in
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a deformed coordinate system,

z± = 1
2
(z2 ± z1), ẑ = z − z+. (2.4)

In the new coordinates (X, Y, ẑ), boundary condition (2.3) takes the form of a
symmetric condition,

U(X, Y, ẑ = ±z−) = 0, (2.5)

which is now consistent with the single condition needed to find the third velocity
component w. Nevertheless, in this new non-orthogonal coordinate set (X, Y, ẑ), the
governing equations are changed by additional terms. The asymptotic Navier–Stokes
equations (2.1) now read

α2∂tu + εRe

(
u

∂u

∂X
− u

∂z+

∂X

∂u

∂ẑ
+ v

∂u

∂Y
− v

∂z+

∂Y

∂u

∂ẑ
+ w

∂u

∂ẑ

)
= − ∂p

∂X
+

∂z+

∂X

∂p

∂ẑ
+

∂2u

∂ẑ2
,

α2∂tv + εRe

(
u

∂v

∂X
− u

∂z+

∂X

∂v

∂ẑ
+ v

∂v

∂Y
− v

∂z+

∂Y

∂v

∂ẑ
+ w

∂v

∂ẑ

)
= − ∂p

∂Y
+

∂z+

∂Y

∂p

∂ẑ
+

∂2v

∂ẑ2
,

0 = −∂p

∂ẑ
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.6)
and the incompressibility condition has to be written as

∂u

∂X
− ∂z+

∂X

∂u

∂ẑ
+

∂v

∂Y
− ∂z+

∂Y

∂v

∂ẑ
+

∂w

∂ẑ
= 0. (2.7)

To complete these governing equations additional boundary conditions are required
on the horizontal boundaries ((X, Y ) plane) of the domain. As mentioned in the
Introduction, we assume that a pressure difference is imposed in the X direction.
In this study a number of boundary conditions are considered. Either a constant
pressure along the boundaries X = 0 and X = 2π is prescribed for a finite cavity, or
some periodic boundary conditions are applied for an infinite set of periodic cavities.
Similarly, for lateral boundary conditions along Y = 0 and Y = 2π, we consider the
case of a finite cavity or an infinite set of periodic cavities, as further detailed in § 4.1.

3. Asymptotic analysis
Below, we follow Hall (1974) and Lo Jacono et al. (2005) and perform a weak-

inertia expansion to find an approximate flow field including inertial steady streaming.
We begin by setting

[p, U] = [p0, U0] + εRe [p1, U1] + O(ε2Re2), (3.1)

where we consider that ε � εRe � 1. Effects of order O(ε) are not considered in
the asymptotic sequence since they do not lead to any corrections to the lubrication
leading order (Leal 1992). However, the Womersley number α can be larger than unity
up to the constraint ε2α2 � 1 as well as α2 � Re/ε, as discussed in § 6.1. Nevertheless,
the latter is the only relevant constraint since it implies the former in the limit εRe � 1.
The leading-order term is the lubrication approximation of the flow and is a local
adaptation of the Stokes solution, as discussed in the next subsection. The next-order
term is the weak inertial correction and has been computed at the stationary limit
(α = 0) by Lo Jacono et al. (2005). In the following, the horizontal flux q is also
introduced as

q =

∫ z2

z1

u dz =

∫ z−

−z−

u dẑ, (3.2)
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where u =(u, v) refers to the two-dimensional horizontal velocity field. In § 5.2.2 we
will investigate the relationship between the total flux in the longitudinal direction
and the applied pressure difference. For this purpose, the total flux Q is defined by

Q =

∫ 2π

0

q dY. (3.3)

Because of the boundary conditions, Q is in the direction of the applied pressure
gradient so that Q = (Q, 0).

3.1. Lubrication solution

Introducing the asymptotic expansion (3.1) in equations (2.6) gives, to leading order,
the lubrication equations

α2 ∂u0

∂t
= −∇p0 + ∇z+

∂p0

∂ẑ
+

∂2u0

∂ẑ2
, 0 = −∂p0

∂ẑ
, (3.4)

where ∇ ≡ (∂X, ∂Y ) stands for the two-dimensional horizontal components of the
gradient.

We next work with complex numbers and introduce the complex fields p̃0, Ũ0 and
q̃0 such that

[p0, U0, q0] = �
{[

p̃0, Ũ0, q̃0

]
eit

}
, (3.5)

since the boundary conditions are time-periodic and the equations are linear at this
stage. Moreover, since p0 does not depend on ẑ, (3.4) leads to the following linear
problem:

∂2ũ0

∂ẑ2
− iα2ũ0 − ∇p̃0 = 0. (3.6)

The solution is found to be

ũ0 =
∇p̃0

k2

(
cosh(kẑ)

cosh(kz−)
− 1

)
, (3.7a)

k = α
√

i. (3.7b)

It can be seen that this solution is the trivial extension of the known Stokes solution
for pulsatile flow between parallel planes obtained by replacing the uniform gap
separation by the local gap z−(X, Y ).

From this, we find the horizontal flux q and the associated complex hydraulic
conductance K0:

q̃0 = −K0∇p̃0, (3.8a)

K0 = − 2

k3
(tanh (kz−) − kz−), (3.8b)

where the leading-order pressure p̃0 solves the two-dimensional problem,

∇ · q̃0 = ∇ · (K0∇p̃0) = K0∇2p̃0 +
dK0

dz−
∇z− · ∇p̃0 = 0. (3.9)

Finally the third component of the velocity is obtained from the integration of the
incompressibility condition (2.7) and expression (3.9). We find

w̃0 = w̃+
0 + w̃−

0 , (3.10a)

w̃+
0 = ∇z+ · u0, (3.10b)
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w̃−
0 = −∇2p̃0

k2

(
z− sinh(kẑ)

sinh(kz−)
− ẑ

)
, (3.10c)

where the third component of the velocity w̃0 was decomposed into a sinuous
contribution w̃+

0 (which is zero when z+ is constant) and a varicose term w̃−
0 (which

is zero when z− is constant, because, in this case, K0 is constant and from (3.9), p̃0

harmonic). In relation (3.10c), ∇2 is the two-dimensional Laplacian in the X and Y

coordinates.

3.2. First inertial correction

The next order of expansion (3.1) in (2.6) leads to a similar Stokes problem for the
inertial perturbation

α2 ∂u1

∂t
+ u0 · ∇u0 − (u0 · ∇z+)

∂u0

∂ẑ
+ w0

∂u0

∂ẑ
= −∇p1 + ∇z+

∂p1

∂ẑ
+

∂2u1

∂ẑ2
,

0 = −∂p1

∂ẑ
.

(3.11)

The first inertial pressure perturbation is still invariant in the ẑ direction and therefore
extends the boundary-layer property of the leading-order lubrication pressure (this
proves to be the case at the next O((εRe)2) order). Because of the nonlinear interaction
between the first-order terms in relation (3.11), a non-zero time-independent term
and a nonlinear harmonic response oscillating as exp(2it) appear in the asymptotic
expansion of the first corrections. We therefore seek [p1, U1, q1] as

[p1, U1, q1] = 1
2

[p1s, U1s, q1s] + 1
2
�{[p̃1u, Ũ1u, q̃1u]e

2it}, (3.12)

where subscripts s and u refer to the stationary and time-dependent parts. The 1/2
prefactor on the right-hand side of (3.12) is set to find a consistent asymptotic steady
limit α → 0 to the stationary solution.

3.2.1. Steady streaming

Inserting (3.5) and (3.12) in (3.11), we see that the steady part of (3.12) solves

∂2u1s

∂ẑ2
− ∇p1s =

1

2

(
ũ0 · ∇ũ∗

0 + w̃−
0

∂ ũ∗
0

∂ẑ
+ c.c.

)
, (3.13)

where the sinuous contribution associated with the third component of the velocity w̃+
0

in the right-hand side Navier term exactly cancels out the Reynolds stress associated
with the coordinate change −(ũ0 · ∇z+)(∂ ũ0/∂ẑ). Since the pressure gradient does not
depend on ẑ and since the ẑ-variations of the right-hand side of (3.13) are analytically
known from (3.7) and (3.10), the solution can be written as

u1s = F1s∇p1s + F2s∇
(
∇p̃0 · ∇p̃∗

0

)
+

[
(F3s + F4s) ∇p̃∗

0 (∇p̃0 · ∇z−) + c.c.
]
, (3.14)

where both ∗ and c.c. stand for complex conjugate (u1s is real). The functions Fis ,
i = 1, 4 are reported in the Appendix. The first term F1s is associated with the
stationary inertial pressure gradient correction. It displays the expected parabolic
profile since it is associated with a stationary flow. All functions Fis fulfil the no-slip
boundary conditions (2.5). The variations of the three functions Fis (i = 2, 3, 4) with
the Womersley number α are non-trivial. Note, however, that at the stationary limit
α, k → 0 (k is directly related to α by relation (3.7b)), we recover the polynomial
dependence with ẑ obtained by Lo Jacono et al. (2005) in identical geometries but
stationary pressure gradient. As opposed to previous analysis by Hall (1974) and
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Grotberg (1984) in which the large- or small-Womersley-number limits are discussed
separately with specific asymptotic approaches, our results (3.14) and (A 1) offer a
complete representation of the steady-streaming solution valid for a large range of
Womersley number α, and possibly overlapping Stokes layers.

Integrating the functions Fis in the ẑ direction, we also obtain the steady part of
the velocity flux correction

q1s = −K1s∇p1s + G2s∇(∇p̃0 · ∇p̃∗
0) + ((G3s + G4s)∇p̃∗

0 · (∇p̃0 · ∇z−) + c.c.), (3.15)

where the first term of the right-hand side associated with a hydraulic conductance
K1s = 2z3

−/3 balances the stationary inertial pressure gradient ∇p1s . Functions Gis are
obtained from the integration (3.2) of the Fis functions given in (A 1) and read

G2s =
1

k4

(
z3

−
3

+
z− tanh(kz−) tanh(k∗z−)

2kk∗ +
5

4k2

(
tanh(kz−)

k
− tanh(k∗z−)

k∗

))
,

G3s = − tanh(k∗z−)

α4

(√
iz−

α

(
1 +

i tanh(kz−) tanh(k∗z−)

2

)

+
tanh(kz−) − 5i tanh(k∗z−)

4α2

)
,

G4s =
z− tanh(kz−)

k3[kz− cosh(kz−) − sinh(kz−)]

(
z− cosh(kz−)

2k
−13 sinh(kz−)

4k2

− tanh(k∗z−)

k∗ ·
[
z− sinh(kz−)+

cosh(kz−)

4k
−3 sinh(kz−)

k2z−

])
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.16)

3.2.2. Nonlinear harmonic response

A similar forced Stokes problem is obtained for the time-dependent inertial velocity

∂2ũ1u

∂ẑ2
− 2iα2ũ1u − ∇p̃1u = ũ0 · ∇ũ0 + w̃−

0

∂ ũ0

∂ẑ
. (3.17)

We obtain a similar velocity–pressure relation

ũ1u = F1u∇p̃1u + F2u∇ (∇p̃0)
2 + (F3u + F4u) ∇p̃0 (∇p̃0 · ∇z−), (3.18)

where, as expected, the first term F1u balancing the oscillating pressure gradient ∇p̃1u

is simply a replica of the Stokes solution (3.7) with a rescaled parameter
√

2k =
√

2α
√

i
associated with the prefactor exp(2it). The functions Fiu fulfil the correct boundary
conditions and their stationary limit is consistent with the polynomial expansion
obtained by Lo Jacono et al. (2005). It is then possible to obtain the period-2
oscillating flux–pressure

q̃1u = −K1u∇p1u + G2u∇ (∇p̃0)
2 + (G3u + G4u) ∇p̃0 (∇p̃0 · ∇z−), (3.19)
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where

K1u = −
√

2

2k3

(
tanh[

√
2kz−] −

√
2kz−

)
,

G2u =
1

4k6

((
1

cosh2(kz−)
−4

)(√
2 tanh(

√
2kz−)

k
−z−

)
+

9 tanh(kz−)

k
−6z−

)
,

G3u =
tanh(kz−)

2k6

(
kz−

cosh2(kz−)
−5 tanh(kz−) +

√
2 tanh(

√
2kz−)

(
3− 1

cosh2(kz−)

))
,

G4u =
z− tanh(kz−)

2k5[kz− cosh(kz−) − sinh(kz−)]

(√
2 tanh(

√
2kz−)

(
2

cosh(kz−)
− sinh(kz−)

·
[

3

tanh(kz−)
+

4

kz−

])
+

kz−

cosh(kz−)
+ sinh(kz−)

[
5+

4 tanh(kz−)

kz−

])
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.20)
The first term K1u is the oscillating hydraulic conductance which is a replica of the
leading-order conductance (3.8b) after substituting the parameter k with

√
2k. As in

the previous subsection, the functions Giu are the integrals (3.2) of functions Fiu in
equations (A 2).

Finally, the equations governing the leading-order pressure p̃0 and first-order
pressures p̃1s and p̃1u are

∇2p̃0 +
k tanh2(kz−)

kz− − tanh(kz−)
∇z− · ∇p̃0 = 0, (3.21a)

∇2p̃1s +
3

z−
∇z− · ∇p̃1s = f1s[p̃0], (3.21b)

∇2p̃1u +

√
2k tanh2(

√
2kz−)√

2kz− − tanh(
√

2kz−)
∇z− · ∇p̃1u = f1u[p̃0], (3.21c)

where expressions for functions f1s, f1u can be found by imposing the incompressibility
conditions on flux (3.15) and (3.19) whilst using relations (3.16) and (3.20). Equations
(3.21) are then solved numerically.

4. Numerical computations
The results obtained in the previous section give explicit analytical expressions for

the ẑ-variations of the lubrication leading order and its first-order inertial velocity
correction. Examination of relations (3.7), (3.14) and (3.18) shows that the complete
expressions for the velocity fields require the evaluation of the pressure fields p0, p1s

and p1u in the (X, Y ) plane.
Using the incompressibility equation (2.2), the no-slip velocity boundary conditions

along the two surfaces z = ± z− and expansion (3.12), it is straightforward to obtain

∇ · q̃0 = ∇ · q1s = ∇ · q̃1u = 0. (4.1)

Therefore, the pressure fields p0, p1s and p1u are each a solution of a Poisson problem
arising from the incompressibility constraints (4.1) of the corresponding velocity fluxes
(3.8), (3.15) and (3.19). These two-dimensional problems are solved numerically and
the numerical procedure is described below. Different pressure and velocity boundary
conditions are discussed depending on the application to be considered.
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4.1. Boundary conditions

The (X, Y ) domain is chosen as either the square [0, 2π] × [0, 2π] or the rectangle
[0, π] × [0, 2π]. We consider three types of boundary conditions for the pressure field,
corresponding to physically different situations.

With the first set of boundary conditions, we consider a domain bounded at Y =0
and Y = 2π by rigid walls along which Neumann boundary conditions are imposed for
the pressure. This is a usual procedure in Hele-Shaw cell configurations. The true no-
slip boundary condition along Y = 0 and Y = 2π is accommodated in a small region
of size h near the rigid walls. This procedure avoids solving the three-dimensional
Stokes flow localized along the lateral edges of a confined cavity and does not take
into account the lateral viscous boundary layer, known to have a small impact in
such a confined system. This case is particularly interesting for domains with a finite
extension in the transverse direction, such as the textured channel studied by Stroock
et al. (2002). In the X direction, a periodically oscillating pressure gradient is imposed
and created by prescribed pressure values at the boundaries X = 0 and X = 2π (or
X = π). In terms of amplitude, the boundary conditions read as

D : p(0, Y ) = p(2π, Y ) − 1 = 0, (4.2a)

N :
∂p

∂Y
(X, 0) =

∂p

∂Y
(X, 2π) = 0. (4.2b)

Boundary conditions (4.2) are Dirichlet–Neumann and referred to as D/N hereafter.
Inserting decomposition (3.1) in (4.2) leads to the same set of boundary conditions
for the leading-order lubrication pressure p0 except for a non-zero pressure Dirichlet
condition

D : p̃i(0, Y ) = p̃i(2π, Y ) − di = 0, (4.3a)

N :
∂p̃i

∂Y
(X, 0) =

∂p̃i

∂Y
(X, 2π) = 0, (4.3b)

where i = 0, 1, d0 = 1 and d1 = 0.
To study the oscillating flow in intrathecal space (the space between two concentric

wavy cylinders) when mean curvature effects are consistently neglected over gap
variations, we consider the case of periodic boundary conditions in the Y direction.
In the X direction, a mean pressure gradient is imposed. In this configuration, we
consider two sets of boundary conditions. With the first one, a uniformly varying
pressure field P̃0 = X/2π on a [0, 2π] × [0, 2π] domain is imposed in the X direction.
The leading pressure is written as

p̃0 = p̃′
0 + P̃0, (4.4)

where p̃′, z1 and z2 are (X, Y ) 2π-periodic function. In terms of amplitude, the
boundary conditions at each order verify

P : p̃′
i(0, Y ) = p̃′

i(2π, Y ), (4.5a)

P : p̃′
i(X, 0) = p̃′

i(X, 2π), (4.5b)

for i = 0, 1. Alternatively, the second set of boundary conditions corresponding to
imposed pressure amplitudes at X =0 and X = 2π can be considered. The resulting
boundary conditions become

D : p̃i(0, Y ) = p̃i(2π, Y ) − di = 0, (4.6a)

P : p̃i(X, 0) = p̃i(X, 2π), (4.6b)
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where i = 0, 1, d0 = 1 and d1 = 0. Boundary conditions P/P (4.5) and D/P (4.6) are
both interesting to consider for CSL oscillations in intrathecal space.

Hence, three types of boundary conditions D/N, P/P or D/P are used in what
follows.

4.2. Solving the pressure Poisson problems

With D/N (4.3) or D/P (4.6) boundary conditions, the leading-order pressure p̃0

solves the two-dimensional Poisson problem

∇ · K0(x, y)∇p̃0 = 0. (4.7)

When using periodic boundary conditions P/P, we must compute p̃′
0 = p̃0 −P0, which

is the solution of

∇ · K0(x, y)∇p̃′
0 = −∇ · K0∇P0 = −∂K0

∂X

1

2π
. (4.8)

At the next order, relations (4.1) can be recast into the general form

∇ · Ki(x, y)∇p̃i = ∇ · bi , (4.9)

with i =1s, 1u, K1s(x, y) = 2z3
−/3 and K1u given by relation (3.20). The right-hand

side is

b1s = G2s∇
(
∇p̃0 · ∇p̃∗

0

)
+

(
(G3s + G4s) ∇p̃∗

0 · (∇p̃0 · ∇z−) + c.c.
)
, (4.10a)

b1u = G2u∇ (∇p̃0)
2 + (G3u + G4u) ∇p̃0 (∇p̃0 · ∇z−), (4.10b)

where Gis and Giu (i = 2, 3, 4) are nonlinear functions of the gap space z−(X, Y )
and of the Womersley number through relations (3.16) and (3.20). The right-hand
side of (4.9) is a fourth-order differential operator and motivates the use of a high-
order method. We discretize (4.7), (4.8) and (4.9) with a spectral method and use a
variational formulation. When D/N boundary conditions are considered, the fields
are expressed as tensor products of Lagrange polynomials based on the Gauss–
Lobatto–Legendre quadrature points. When periodic boundary conditions hold in
one or two directions (P/P or D/P), a Fourier basis and equally spaced points in
the corresponding directions are used. In any case, the fields are represented with
their values at the (Nx + 1) × (Ny + 1) nodes. The linear system arising from the
discretization is inverted with a bi-conjugate gradient method modified to handle
linear systems in which the unknowns are complex.

4.3. Determination of the flow, the flux and the stream function

Once the pressure field is known, the velocity u is obtained directly from expressions
(3.7), (3.14) and (3.18) and the flux q from expressions (3.8), (3.15) and (3.19). Since
the flux is divergence-free, we define the instantaneous stream function Ψ = (0, 0, ψ)
as the solution of

∂ψ

∂Y
= qX,

∂ψ

∂X
= −qY , (4.11)

everywhere. This problem is discretized using Gauss–Lobatto–Legendre nodes and
inverted with a direct method, namely a successive diagonalization method.

For a deeper insight into inertial effects, the stream function can easily be separated
into three contributions as

ψ(t) = �{ψ̃0 eit} +
εRe

2
(ψ1s + �{ψ̃1u e2it}). (4.12)
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(a)

(b)

Figure 2. Illustration of the gap variations z− given in (5.1) in perspective view for (a) and
with greyscale variations (identically scaled) in the (X, Y ) plane in (b). The amplitude is
σ = 7/13 as used in Nishimura et al. (1989).

Each instantaneous stream function ψ̃0, ψ1s and ψ̃1u verifies a relation of the form
(4.11) that is obtained by replacing the flux with the corresponding contribution (3.8),
(3.15) or (3.19), respectively. Apart from the steady-streaming stationary component
ψ1s , the instantaneous stream function ψ is in no way directly related to the
Lagrangian flow trajectories. Nevertheless, stream function contours provide a way
of visualizing the flux q, rendering its calculation worthwhile.

5. Numerical results
This section illustrates the intricate effect of weak inertia, Womersley number and

geometrical complexity of the flow in confined wavy cavities.

5.1. Two-dimensional configurations

We first consider two-dimensional surface variations in order to compare our
asymptotic analysis with previous contributions. For this, we consider a single mode
variation of the gap similar to those used by Nishimura et al. (1989) and Sobey
(1980a ,b), and illustrated in figure 2:

z−(X, Y ) = 1
2
(1 + σ cos(X)). (5.1)

It is important to stress that the aspect ratio of the average gap to the chosen
wavelength is not asymptotically small in these previous studies (e.g. ε ∼ 0.4), thus the
analysis developed in this work can only be qualitative in comparison. Nevertheless,
neither the numerical study conducted by Sobey (1980a) nor the experimental
investigation (Sobey 1980b) provide an analysis of the steady-streaming component
of the flow. Nishimura et al. (1989) do, however, give a qualitative representation of
the steady-streaming flow patterns in the particular case of ε � (2π)3/14 and σ = 7/13.
Figure 3 shows the streamlines in the (X, Z) plane (where Z refers to the unscaled
vertical coordinate) associated with the two-dimensional steady-streaming flow field
(u, w)1s (v = 0 in this case). For low Womersley numbers, the steady-streaming
flow field displays a symmetrical quadrupolar vortex structure, the stagnation
point of which is placed exactly along the longitudinal position where the depth
of the channel is minimum, as shown in figure 3(a,b). Furthermore, as found in
Nishimura et al. (1989), there is a threshold, associated to a critical Womersley
number above which the flow appears, for which the flow field suddenly displays a
supplementary central eddy which expands rapidly for increasing Womersley numbers,
as illustrated in figure 3(c,d ). This flow structure is exactly the same as that discussed in
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(a)

(b)

(c)

Z

X

(d)

Figure 3. Steady-streaming streamlines in continuous lines and vertical velocity field w1s in
greyscale for various Womersley numbers α. The gap configuration is the one represented in
figure 2(a,b) using periodic boundary conditions P/P (4.5). (a) α = 12, (b) α =13, (c) α = 14,
(d ) α = 15.

Nishimura et al. (1989). We found a critical Womersley αc = 13.5 for the central eddy
apparition which differs moderately from that obtained in Nishimura et al. (1989),
αc � 17 (transposing their parameter definition to ours). The 20 % difference obtained
can be attributed to the finite aspect ratio ε = (2π)3/14 � (2π)0.21 of their geometry,
which is not that small.

5.2. Three-dimensional configurations

5.2.1. Analysis of the flow field

Let us first choose a general family of gap variations in the (X, Y ) plane with a
unique spatial wavelength in both directions,

z−(X, Y ) =
1

2

(
1 + σ

CA cos(X + Y ) + CB cos(X − Y )

CA + CB

)
, (5.2)

where CA � 0 and CB � 0. These parameters permit the position of the bump to
be varied in the (X, Y ) plane and σ is the amplitude of the variation, which can be
of order 1. Examples of geometries are shown in figure 4. On the numerical side,
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(a) (b)

(c) (d)

Z

X

X

Y

Y

Figure 4. Illustration of the gap variations z− given in (5.2) in perspective view for (a,b)
and with greyscale variations (identically scaled) in the (X, Y ) plane in (c,d ). In subsets (a,c)
X, Y is within [0, 2π]2, and symmetrical parameters CA =CB = 1 are chosen with a moderate
amplitude σ = 0.3. In subsets (b–d ) X, Y is within [0, π] × [0, 2π], and highly non-symmetrical
parameters CA = 1, CB = 10 are chosen with a more pronounced amplitude σ = 0.5.

solving configurations for which σ ≈ 1 is difficult, mainly because z− approaches zero,
inducing singularities in functions Gi (defined in (3.16) and (3.20)). With 256 nodes in
each direction, it was possible to find accurate solutions for values as high as σ =0.7.

Before discussing the results, we summarize the symmetry properties of the
lubrication equations and boundary conditions that will help us to understand
the effect of the inertial nonlinearities. We first consider the case where CA = CB

(figures 4a,c) with D/N boundary conditions. It is easy to show that the equations
of the lubrication approximation with their corresponding boundary conditions are
invariant under the reflections SX and SY , with respect to X = π and Y = π defined by

SX : (X, Y ) −→ (2π − X, Y ), (p̃′
0, q0X

, q0Y
, ψ0) −→ (−p̃′

0, q0X
, −q0Y

, ψ0), (5.3)

SY : (X, Y ) −→ (X, 2π − Y ), (p̃′
0, q0X

, q0Y
, ψ0) −→ (p̃′

0, q0X
, −q0Y

, −ψ0), (5.4)

where p̃′
0 = p̃0 − X/2π and q0 = (q0X

, q0Y
). The invariance of z− with respect to SX

and SY is of course partially responsible for these symmetry properties. Note that this
invariance is preserved for D/N boundary conditions and P/P boundary conditions
when p̃′

0 is replaced by p̃0. Figure 5 presents the flow structure of the leading-
and first-order inertial approximation at a given instant and for different Womersley
numbers α = 1, 3 and 6. As expected, the lubrication stream function ψ̃0 is SX- and SY -
invariant (note that the stream function changes sign across the line Y = π). Figure 5
also shows that the inertial terms preserve the SY -invariance but break the SX-
invariance. This SX-reflection invariance of ψ̃0 is related to the Stokes reversibility of
the streamlines. The loss of this symmetry is stronger for small α (compare α = 1 in
figure 5a,b with α = 6 in figure 5e,f ). Figures 6 and 7 describe the flow structure of the
steady and time-dependent corrections to the lubrication stream function. The loss of
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(a) (b)

(c) (d)

(e) (f)

X

Y

Figure 5. Comparison between the instantaneous complete stream function ψ̃ = ψ̃0 + εRe ψ̃1

in dash-dotted lines and the lubrication non-inertial contribution ψ̃0 in continuous lines
for various Womersley numbers α = 1, 3, 6. The gap configuration is the one represented in
figure 4(a,c) using periodic boundary conditions P/P (4.5). (a) ψ̃(t =0) and ψ̃0(t = 0) = �{ψ̃0},
α = 1. (b) ψ̃(t = 3π/4) and ψ̃0(t = 3π/4) = �{ψ̃0}, α = 1. (c) Same as (a) for α = 3. (d ) Same as
(b) for α = 3. (e) Same as (a) for α =6. (f ) Same as (b) for α =6.

the SX-invariance is produced by the SX-antisymmetry of the steady-streaming and
pulsating inertial corrections. Figures 6 and 7 show that nonlinearities produce higher
spatial harmonics than those originally present in the lubrication and aperture fields.
This is more visible in figures 6(d ) and 7(d ), where second harmonic spatial structures
now occur. Whether these higher harmonics dominate the original variations depends
on the Womersley number. Figure 6 shows that a maximum is reached at a value
close to α =3.
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(a) (b)

(c) (d)

(e) (f)

X

Y

Figure 6. Pulsating inertial corrections ψ̃1u represented in greyscale for various Womersley
numbers α. The gap configuration is the one represented in figure 4(a,c) using periodic
boundary conditions P/P (4.5). (a) �{ψ̃1u}, α = 1; (b) �{ψ̃1u}, α = 1; (c) �{ψ̃1u}, α = 3;
(d ) �{ψ̃1u}, α = 3; (e) �{ψ̃1u}, α = 6; (f ) �{ψ̃1u}, α =6.

The relation between the flow structure and the aperture field is given in figure 8.
Figure 8(a) shows that at small amplitude, only a single quadrupolar spatial mode
exists. This suggests that the small amplitude ‘weak disorder’ expansion performed in
Lo Jacono et al. (2005) for small σ in the stationary limit α =0 should also be correct
here for any α. When the amplitude of the aperture variations increases (figure 8a–d ),
second spatial harmonics complexify the flow and deform the quadratic shape of
figure 8(a) into the elongated elliptic shape of figure 8(d ).

Let us now examine more complex configurations for which the geometry variations
are associated with several spatial modes. First, we examine the situation for which



446 R. Guibert, F. Plouraboué and A. Bergeon

(a) (b)

(c) (d)

X

Y

Figure 7. Steady-streaming corrections ψ1s represented in greyscale for various Womersley
numbers α. The gap configuration is the one represented in figure 4(a,c) using periodic
boundary conditions P/P (4.5). (a) α = 1, (b) α =3, (c) α = 6, (d ) α = 9.

one mode is present along the longitudinal direction whilst its wavelength doubles
along the transverse one:

z−(X, Y ) = 1
2
[1 + 0.3 (cos(X + 2Y ) + cos(X − 2Y ))]. (5.5)

The cavity associated with the gap variations given in (5.5) is represented in
figure 9. The resulting steady streaming is also shown in figure 10. A comparison
between figures 7 and 10 obtained with the same amplitude σ = 0.3 and identical
Womersley numbers indicates that the presence of higher modes in the cavity’s
transverse direction directly impacts the steady-streaming flow. A period doubling of
the quadrupolar vortex structure is observed in the Y direction in figure 10 whilst the
flow evolution with the Womersley number is very similar. We now turn to cavities
having two harmonic contributions in both the X and Y directions, illustrated in
figure 11:

z−(X, Y ) = 1
2
(1+0.3(cos(X+Y )+cos(X−Y ))+ 1

5
(cos 2(X+Y )+cos 2(X−Y ))). (5.6)

In the case of the cavity associated with (5.6) we again used 256 × 256 grid points
in order to be able to capture the highest modes resulting from nonlinearities. We
found that the resulting steady streaming is more sensitive to the presence of higher
spatial modes for some Womersley numbers than for others. The comparison between
figure 7(a,b) and figure 12(a,b) does not reveal any significant differences whilst, in
contrast, the harmonics shown in figure 7(d ) are blurred in figure 12(d ) due to some
destructive interaction with the cavity’s harmonics.
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(a) (b)

(c) (d)

X

Y

Figure 8. Inertial correction to the stream function when varying the amplitude parameter
of the wavy confined channel σ for a Womersley number α =1. The in-phase component
of the double-frequency oscillating stream function �{ψ̃1u} is represented in greyscale while
the steady-streaming component ψ1s is shown with dashed lines. (a) σ = 0.0005, (b) σ = 0.1,
(c) σ = 0.3, (d ) σ = 0.5.

5.2.2. Pressure–flux relationship

At the leading order, the linear relation between the pressure and the flux produces
a complex hydraulic conductance that depends on the Womersley number and cavity
shape. At the next order, conditions are investigated in which a persistent non-zero
time average flux is induced by nonlinear inertial effects. In this subsection, we seek
a general expression for the dimensionless flux Q(∆p) defined in (3.3), of the form

Q = �{C̃0 eit}∆p +
εRe

2
(C1s + �{C̃1u e2it})∆p2, (5.7)

where ∆p is the dimensionless pressure difference.

5.2.3. Lubrication hydraulic conductance

The first term on the right-hand side of (5.7) is the lubrication contribution of
the complex total hydraulic conductance C̃0 of the flow. As a result of the in-phase
applied pressure ∆P eit , there is either an in-phase response of the flux associated with
�{C̃0} or an out-of-phase response associated with �{C̃0} and physically produced
by the delayed viscous response in the Stokes layers. In the case of two parallel
plates, for which σ =0 and the pressure drop ∆P is applied over a longitudinal
distance L along X (the cavity length is not necessarily equal to the typical in-
plane variations λ/2π chosen as the dimensional reference length scale), C̃0 is equal
to LK0/λ≡ (L/λ)K0(z− = 1/2). This was obtained from relation 3.8b evaluated at
z− = 1/2 which is the limit of (5.2) when σ = 0. Thus, for two parallel plates this total
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(a)

(b)

Figure 9. Illustration of the gap variations associated with spatial variations (5.5).

(a) (b)

(c) (d)

X

Y

Figure 10. Steady-streaming corrections ψ1s represented in greyscale for various Womersley
numbers α. The gap configuration is the one represented in figure 9(a,b) using periodic
boundary conditions P/P (4.5). (a) α = 1, (b) α =3, (c) α = 6, (d ) α = 9.

hydraulic conductance reads

C̃0 =
L

λk2

(
1 − 2

k
tanh

k

2

)
, (5.8a)

α � 1 C̃0 =
L

λ

(
− 1

12
− i

α2

120
+ · · ·

)
, (5.8b)

α � 1 C̃0 =
L

λ

(
− i

α2
+ (1 + i)

√
2

α3
+ · · ·

)
, (5.8c)

where (5.8b) and (5.8c) are the small and large Womersley limit of (5.8a). The
large- or small-Womersley-number asymptotic behaviour given in (5.8b,c) is shown
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(a)

(b)

Figure 11. Illustration of the gap variations associated with spatial variations (5.6).

(a) (b)

(c) (d)

X

Y

Figure 12. Steady-streaming corrections ψ1s represented in greyscale for various Womersley
numbers α. The gap configuration is the one represented in figure 11(a,b) using periodic
boundary conditions P/P (4.5). (a) α =1, (b) α = 3, (c) α =6, (d ) α = 9.

for easier comparison with the results in a non-parallel cavity. In the case of the
variable aperture field of figure 4(a,c), whose longitudinal length is L = λ so that
the dimensionless cavity longitudinal size is 2π, the variations of C̃0 are reported
in figure 13(a). It follows the same algebraic dependence on α as (5.8), but with
different prefactors which depend on the aperture z− through parameters CA, CB

and the amplitude σ . Figure 13(a) does not reveal any great difference between
the asymptotic behaviour of the parallel plate configuration (5.8) and the hydraulic
conductance C̃0 found in the case CA = CB = 1, σ = 0.3. This is due to the prefactors
correcting the parallel case, which are of order O(σ 2) and therefore smaller than the
order-1 prefactors of (5.8). Neither the real nor the imaginary part changes sign with
the Womersley number: there is obviously no backflow to the applied pressure drop.
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Figure 13. Hydraulic conductances for lubrication leading order in (a) and quadratic inertial
corrections in (b). (a) The gap variations represented in figure 4(a,c) were chosen. �{C̃0} is

the upper continuous curve and �{C̃0} is the lower continuous one. Dotted lines show the
asymptotic behaviour of the homogeneous case (5.8). (b) The gap variations represented in
figure 4(b,d ) were chosen with D/N boundary conditions (4.2). �{C1u} is the continuous
curve and �{C1u} is the lower dash-dotted line. The steady-streaming contribution C1s is also
represented by a dashed line.

Furthermore, it is interesting to note that the ‘inductive effects’ associated with �{C̃0}
are maximal for an intermediate Womersley number close to 3. For larger values,
�{C̃0} decays as ∼1/α3 whilst �{C̃0} decays as ∼1/α2, as expected (Leal 1992).

Figure 13(a) also investigates the effect of the boundary conditions on the hydraulic
conductance C̃0 for the aperture field illustrated in figure 4(a,c). The boundary
conditions P/P (4.5) or D/P (4.6) did not produce conductances that differed
significantly from each other.

5.2.4. Inertial hydraulic conductances

We next investigate the possible contribution of nonlinear effects to the second and
third terms of the right-hand side terms of relation (5.7), although such effects do not
occur in many configurations. For periodic lateral boundary conditions P/P (4.5)
and D/P (4.6), we find that C1s and C̃1u are both zero for any z− of the form (5.2).
More precisely, with these configurations, for any parameter CA, CB or σ , we obtained
C1s = C̃1u = 0. A similar result was also obtained at the stationary limit by Lo Jacono
et al. (2005). This is reminiscent of what has already been found in porous media
by Mei & Auriault (1991), namely that homogeneous micropore geometry has zero
quadratic macroscopic inertial corrections. This theoretical result led to a number
of discussions in the porous media research community because most experimental
observations reported the opposite, i.e. a quadratic correction. It was finally discovered
by Firdaouss, Guermond & Le Quéré (1997) that some quadratic corrections could
be obtained if some disorder was introduced at the pore scale or if finite size effects
(non-converged statistical averages) were considered.

In the present situation, we investigate the possibility of quadratic effects occurring
in a finite-sized cavity. With D/N (4.3) boundary conditions and a domain bounded
in the transverse reflection, these nonlinear effects may make a non-zero contribution
to the flux, provided that the flow breaks the transverse reflection invariance SY . We
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found numerically that the magnitude of this contribution depended on how much
the symmetry was broken: it increased with the departure from the SY -invariant
case. This effect with the geometries is sketched in figure 4(b,d ) using CA = 1 and
CB =10. Figure 13(b) represents the inertia hydraulic conductances C1s and C̃1u of
the steady-streaming and oscillating terms, respectively. Their variations are of the
same order of magnitude but three orders smaller than the leading order C̃0.

The steady-streaming component nevertheless represents the only time-averaged
non-zero contribution to the flux (5.7). Hence, although small, it is the only systematic
continuous out-going flux associated with the applied pulsating pressure drop. The
existence of non-zero C1s reflects the symmetry breaking of the steady-streaming flow
along the longitudinal direction. The variation of C1s in figure 13(b) shows a uniform
decay as Womersley number increases, associated with the shrinkage of the thickness
of the Stokes layers. Hence, from the interplay of nonlinear effects and broken
symmetries, some continuous fluxes can be driven out of a wavy cavity of finite size.

6. Discussion and conclusion
6.1. Discussion

This section reviews the limitations and possible extensions of the proposed analysis.
First, since our analysis relies heavily on the lubrication approximation, many complex
flow patterns found in large-amplitude geometries cannot be captured in this special
limit. More precisely, we consider the dimensionless amplitude σ ∼ O(1), but the
lubrication approximation breaks down when σ ∼ O(1/ε) or ε ∼ O(1). For example,
in the case of varicose shape variation considered in this study, it is clear that the
filling vortex found in short-wavelength transversely invariant furrowed channels in
Sobey (1980a,b) cannot be captured. In particular, the vortices found for sinusoidal
channel shapes are already present at zero Reynolds number and are reminiscent of
Moffat’s eddies. They appear when the ratio between the mean channel depth and the
wavelength is close to ε = (2π)0.8 (Pozrikidis 1987) in the limit α = 0. Nevertheless,
when considering the influence of inertial effects (see § 5), we found a flow pattern of
transverse steady-streaming vortices qualitatively similar to those found for a finite
aspect ratio. These results qualitatively explain the experimental results found in
Nishimura et al. (1989) and Sobey (1980b), where it is shown that central eddies are
inertially driven.

Furthermore, interesting effects associated with sinuous variations are not present
in this analysis. We did not a priori neglect or ignore the impact of sinuous effects,
since any long-wavelength channel shape is indeed considered. They do affect the
leading-order third component of the velocity w+

0 . Nevertheless, it turns out that
sinuous variations do not influence the in-plane flow at the leading order, whether
inertial effects are included or not, when O(ε2) terms are neglected. The inclusion
of O(ε2) terms when taking into account the curvature terms could be a possible
extension of this work, and should provide the flow influence of sinuous variations.

As mentioned previously, the analysis presented is a long-wavelength ε � 1,
moderate-Reynolds-number analysis εRe � 1. These hypotheses are consistent with
both intrathecal space variations h/λ∼ 1/10 and Reynolds number Re ∼ 1–10
evaluated from human in vivo measurements by Balédent et al. (2007). We expected
the influence of inertia effects on the flow to be very weak. We have shown that,
although small, inertia effects induce the only non-zero time-averaged quantities in
this analysis and could be of importance. In this paper, we have investigated inertia-
driven stationary flux production. It might be a possible mechanism for the CSL
renewal, which is known to be drained from brain tissue to venous compartments at
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very low flow rates. Some other issues associated with the convective steady-streaming
transport of some drugs delivered inside the intrathecal space might also be of interest
for future studies.

Although lubrication generally provides fairly robust approximations, a more
quantitative estimate of the influence of either O(ε2) curvature effects or mean
curvature O(h/D) contributions in realistic cavities should be interesting to evaluate.
The moderate-Reynolds hypothesis has also previously shown intriguing robustness
to values as large as Re ∼ 10/ε for stationary conditions (Lo Jacono et al. 2005).
A careful analysis of the discarded terms of (2.6) shows a supplementary constraint
on the lower value of the Reynolds number: Re � max(ε, εα2). The first condition
is not difficult to meet, since if Re � ε, inertial effects are negligible, and thus not
interesting. The second condition can be more restrictive if α2 becomes very large.
It should be noted that the interesting physiological range of values for CSL flow is
α2 within 0.5–3, so the constraint on the largest Reynolds number values associated
with the Womersley number ε2α2 � 1 can safely be met for ε ratios smaller than
1/

√
3 � 0.57.

Finally, we would like to discuss the possibility of taking into account general
multi-mode temporal variations in the pressure forcing in a similar analysis. The
leading-order lubrication flow being linear, the flow field can be obtained easily for
these more general conditions from the Fourier transform of the applied pressure
temporal variations. The lubrication solution will then decompose into the linear
superposition of all the Fourier modes, and it is thus easy to obtain from our analysis.
Further nonlinear effects are more complicated to evaluate since linear superposition
no longer applies for the forcing terms associated with the Reynolds stress. The
lubrication solution enters into the Reynolds stress forcing in relations (3.13) and
(3.17) through a convolution product between Fourier modes. In this analysis we
have evaluated the effect of each velocity mode U0(α) on itself in the nonlinear
Navier momentum convection term. In order to analyse more general time-dependent
forcing, one should compute the effect of one mode U0(α) on another mode U0(α

′),
which means computing the interaction between modes. It might then be possible to
find the solution of inertial corrections by computing first the response to each coupled
mode interaction and latter proceeding to the convolution product by summing all
possible coupled contributions. A treatment similar to the one used in this manuscript
should then be applied to evaluate the flow forced by Reynolds stress coupled mode
interactions. This might lead to an expression similar to relations (3.14) and (3.18),
which are indeed the results obtained for the cross-contribution of the same mode.
Such computations would nevertheless require a non-negligible algebraic effort.

6.2. Conclusion

We have conducted a theoretical analysis of weak-inertial lubricated confined flows
oscillating in a wavy open channel. We considered channels in which the variations
in the two horizontal directions had long wavelengths compared with the mean
vertical distance h between the channel walls (h/λ� 1). The flow is governed by two
independent dimensionless parameters: the lubricated Reynolds number εRe and the
Womersley number α. We calculated the first inertial correction to the lubrication
theory and obtained a complete analytical expression of the flow field dependence
on both the channel transverse (vertical) direction and the Womersley number.
These variations are decoupled from the spatial variations in the two other horizontal
directions. The pressure problem in the horizontal coordinates has been formulated at
the lubrication limit and at the first order including inertial corrections. The inertial
pressure corrections are coupled to the leading-order lubrication pressure through
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fourth-order nonlinear forcing terms and must be solved numerically. We show that
some of the symmetry invariances of the lubricated flow are broken by inertial
effects. The inertial flow correction has two distinct components: a stationary steady-
streaming flow and a harmonic oscillating one. Both of them have been computed for
various cavity shapes. In the case of two-dimensional transversely invariant shapes we
recover previously published results on the steady-streaming quadrupolar vortex flow.
We consistently found a critical Womersley number for the appearance of a central
eddy. For one-mode three-dimensional cavities, we show that the steady streaming
also displays a quadrupolar flow in the horizontal (X, Y ) plane of the cavity.

When increasing the Womersley number, this quadrupolar flow shows a transition
towards an octupolar structure when the amplitude of the wall variations is sufficiently
great for large Womersley numbers. When some higher harmonic variations are
present in the cavity shape, they can also influence the steady streaming. We first
showed that the cavity wavelength had a direct influence on the steady-streaming
wavelength. Furthermore we also observed that the cavity harmonics could influence
the steady-streaming harmonics at large Womersley number.

Finally, we have analysed the total flux–pressure relationship. It involves different
hydraulic conductances, which have been computed. We first computed the linear
conductance and analysed its asymptotic behaviour for large or small Womersley
number. We found a very small influence of the applied boundary conditions for
this linear conductance, in contrast to those associated with inertial contributions.
For periodic boundary conditions we found zero contribution of inertial effects
to the mean flux. Conversely, when breaking the channel shape symmetry and
when considering Dirichlet–Neumann boundary conditions we found a non-zero
inertial contribution to the mean flux. The time-averaged flux showed a non-trivial
continuous contribution from the steady streaming, which could be triggered by
changing the Womersley number.
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Appendix. Velocity field analytic expressions

F1s =
ẑ2 − z2

−
2

,

F2s =
1

2k4

(
z2

− − ẑ2

2
+

sinh(kz−) sinh(k∗z−) − sinh(kẑ) sinh(k∗ẑ)

2kk∗ cosh(kz−) cosh(k∗z−)

+
1

k2

(
cosh(kẑ)

cosh(kz−)
− cosh(k∗ẑ)

cosh(k∗z−)

))
,

F3s =
tanh(k∗z−)

2k4

(
1

k∗

[
1− cosh(k∗ẑ)

cosh(k∗z−)

]
+

sinh(kẑ) sinh(k∗ẑ) − sinh(kz−) sinh(k∗z−)

2k cosh(kz−) cosh(k∗z−)

)
,

F4s =
tanh(kz−)

k3[kz− cosh(kz−) − sinh(kz−)]

(
sinh(kz−)(ẑ sinh(k∗ẑ) − z− sinh(k∗z−))

2k∗ cosh(k∗z−)

+
z−

4k

(
cosh(kz−)−cosh(kẑ) cosh(k∗ẑ)

cosh(k∗z−)

)
+

sinh(kz−)

k2

(
cosh(k∗ẑ)

cosh(k∗z−)
−1

))
.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)
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F1u =
1

2k2

(
cosh(

√
2kẑ)

cosh(
√

2kz−)
−1

)
,

F2u =
1

4k6
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cosh(

√
2kẑ)

cosh(
√
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− 1

)(
1
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cosh(kẑ)

cosh(kz−)
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)2

−9

)
,
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tanh(kz−)

2k5
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cosh(

√
2kẑ)

cosh(
√

2kz−)
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3− 1
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cosh(kz−)
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cosh(kz−)
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k
)

+
z−

2

cosh2(kẑ)
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√
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2

cosh2(kz−)
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k
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.
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