38 research outputs found
Role of chemical-physical properties in the behaviour of nanomaterials in the gastrointestinal tract
Comparative Study of SPA Mud from "Bacino Idrominerario Omogeneo dei Colli Euganei (B.I.O.C.E.)-Italy" and Industrially Optimized Mud for Skin Applications
The term "Salus per aquam (SPA) therapies" refers to therapeutic pathways that includes mud therapy. The therapeutic efficacy of a peloid depends on its chemical and mineralogical composition, as well as its technological properties. Considering the increasing use of clay-based products, it becomes essential to characterize peloids from a qualitative and quantitative point of view. Therefore, this research project aimed to develop a protocol that allows characterization of the chemical-physical composition of sludges collected from different areas of the Homogeneous Euganean Hills Hydromineral Basin (B.I.O.C.E.). The study established a comparative study both between different matrices and between the same matrices at different maturation times, including also a comparison with an industrialized product, that can be used at home, which maintains the characteristics of a natural mud. This research was developed studying the pH, grain size distribution, and chemical and mineralogical composition. Peloids are characterized by a neutral/basic pH and are divided into two categories from a granulometric point of view: The chemical composition allowed observation of numerous correlations between oxides present in the samples and to quantify the presence of heavy metals. Mineralogical analysis made it possible to identify and compare the composition of each sample, also according to the maturation time. Thanks to the methods adopted, important correlations were achieved
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
COVID-19 Severity in Multiple Sclerosis: Putting Data Into Context
Background and objectives: It is unclear how multiple sclerosis (MS) affects the severity of COVID-19. The aim of this study is to compare COVID-19-related outcomes collected in an Italian cohort of patients with MS with the outcomes expected in the age- and sex-matched Italian population. Methods: Hospitalization, intensive care unit (ICU) admission, and death after COVID-19 diagnosis of 1,362 patients with MS were compared with the age- and sex-matched Italian population in a retrospective observational case-cohort study with population-based control. The observed vs the expected events were compared in the whole MS cohort and in different subgroups (higher risk: Expanded Disability Status Scale [EDSS] score > 3 or at least 1 comorbidity, lower risk: EDSS score ≤ 3 and no comorbidities) by the χ2 test, and the risk excess was quantified by risk ratios (RRs). Results: The risk of severe events was about twice the risk in the age- and sex-matched Italian population: RR = 2.12 for hospitalization (p < 0.001), RR = 2.19 for ICU admission (p < 0.001), and RR = 2.43 for death (p < 0.001). The excess of risk was confined to the higher-risk group (n = 553). In lower-risk patients (n = 809), the rate of events was close to that of the Italian age- and sex-matched population (RR = 1.12 for hospitalization, RR = 1.52 for ICU admission, and RR = 1.19 for death). In the lower-risk group, an increased hospitalization risk was detected in patients on anti-CD20 (RR = 3.03, p = 0.005), whereas a decrease was detected in patients on interferon (0 observed vs 4 expected events, p = 0.04). Discussion: Overall, the MS cohort had a risk of severe events that is twice the risk than the age- and sex-matched Italian population. This excess of risk is mainly explained by the EDSS score and comorbidities, whereas a residual increase of hospitalization risk was observed in patients on anti-CD20 therapies and a decrease in people on interferon
DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France
We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon
Distribution and Elimination of palladium in rats after 90-day oral administration.
This study determined the distribution in internal organs and the elimination routes in rats after oral administration of potassium hexachloro-palladate. Forty male Wistar rats were exposed for 90 days to 0, 10, 100 and 250 ng/mL of the palladium (Pd) salt in drinking water. Samples of urine and feces were collected on days 1, 30, 60 and 90, while organs (kidney, liver, lung, spleen and bones) and blood were collected at the end of the experiment. Quantification method was based on the sector-field inductively coupled plasma mass spectrometry. Results indicated that Pd ions were rapidly eliminated from the body. The principal excretion was through the feces (650 \ub1 72.7 ng/g dry weight, at the Pd dose of 250 ng/mL), but at the higher dosing Pd was also eliminated through the urine (6.16 \ub1 1.91 ng/mL for the Pd intake of 250 ng/mL). A clear relationship between the Pd ingested dose and the Pd excretion amount was observed mainly in the feces. Absorbed Pd was mostly found in the kidney of rats (124.4 \ub1 23.0 ng/g dry weight, following the highest dose), while liver, lung, spleen and bones did not accumulate the metal. At the higher dosing, Pd content in the kidney raised proportionally with the Pd dose. Our findings may be useful to help in the understanding of the health impact of Pd dispersed in the environment as well as in identifying appropriate biological indices of Pd exposure
Distribution and elimination of palladium in male wistar rats following 14-day oral exposure in drinking water.
The Pd tissue distribution and elimination in rats following oral exposure in drinking water of dipotassium hexachloropalladate at doses of 100 or 250 ng/ml for 14 d were determined. The sector field inductively coupled plasma mass spectrometry used for Pd quantification showed the adequate sensitivity (10 ng/l) and accuracy (96-105%), and all the more in consideration of the very low levels of Pd accumulated. Tissues were taken and analyzed after 14 d. The tissue containing the highest Pd concentration was the kidney (4 ng/g dry weight in controls and 75 ng/g dry weight at the maximum dose), with left and right kidneys showing a comparable accumulation. The Pd kidney levels rose, but not significantly, with the administered dose. None of the other organs (liver, lung, spleen, adrenal glands, and bones) appeared to accumulate Pd, even at the highest dose. At the 250-ng/ml dose, small amounts of Pd were found in serum (0.27 ng/ml vs. 0.19 ng/ml in controls), while they were higher in urine (1.2 ng/ml vs. 0.16 ng/ml in controls) and in feces (3,231 ng/g dry weight vs. 69 ng/g dry weight in controls). Feces were the main excretion route for Pd, with a significant linear correlation with exposed dose, which is likely due to low intestinal absorption of Pd