1,460 research outputs found

    Unpackaging demand for water service quality : evidence from conjoint surveys in Sri Lanka

    Get PDF
    In the early 2000s, the Government of Sri Lanka considered engaging private sector operators to manage water and sewerage services in two separate service areas: one in the town of Negombo (north of Colombo), and one stretching along the coastal strip (south from Colombo) from the towns of Kalutara to Galle. Since then, the government has abandoned the idea of setting up a public-private partnership in these two areas. This paper is part of a series of investigations to determine how these pilot private sector transactions (forming part of the overall water sector reform strategy) could be designed in such a manner that they would benefit the poor. The authors describe the results of a conjoint survey evaluating the factors that drive customer demand for alternative water supply and sanitation services in Sri Lanka. They show how conjoint surveys can be used to unpackage household demand for attributes of urban services and improve the design of infrastructure policies. They present conjoint surveys as a tool for field experiments and a source of valuable empirical data. In the study of three coastal towns in southwestern Sri Lanka the conjoint survey allows the authors to compare household preferences for four water supply attributes-price, quantity, safety, and reliability. They examine subpopulations of different income levels to determine if demand is heterogeneous. The case study suggests that households care about service quality (not just price). In general, the authors find that households have diverse preferences in terms of quantity, safety, and service options, but not with regard to hours of supply. In particular, they find that the poor have lower ability to trade off income for services, a finding that has significant equity implications in terms of allocating scarce public services and achieving universal water access.Town Water Supply and Sanitation,Water and Industry,Economic Theory&Research,Water Use,Water Supply and Sanitation Governance and Institutions

    Cellular-level versus receptor-level response threshold hierarchies in T-Cell activation

    Get PDF
    Peptide-MHC (pMHC) ligand engagement by T-cell receptors (TCRs) elicits a variety of cellular responses, some of which require substantially more TCR-mediated stimulation than others. This threshold hierarchy could reside at the receptor level, where different response pathways branch off at different stages of the TCR/CD3 triggering cascade, or at the cellular level, where the cumulative TCR signal registered by the T-cell is compared to different threshold values. Alternatively, dual-level thresholds could exist. In this study, we show that the cellular hypothesis provides the most parsimonious explanation consistent with data obtained from an in-depth analysis of distinct functional responses elicited in a clonal T-cell system by a spectrum of biophysically defined altered peptide ligands across a range of concentrations. Further, we derive a mathematical model that describes how ligand density, affinity, and off-rate all affect signaling in distinct ways. However, under the kinetic regime prevailing in the experiments reported here, the TCR/pMHC class I (pMHCI) dissociation rate was found to be the main governing factor. The CD8 coreceptor modulated the TCR/pMHCI interaction and altered peptide ligand potency. Collectively, these findings elucidate the relationship between TCR/pMHCI kinetics and cellular function, thereby providing an integrated mechanistic understanding of T-cell response profiles

    Pyrimidine biosynthesis is not an essential function for trypanosoma brucei bloodstream forms

    Get PDF
    <p>Background: African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite.</p> <p>Methodology/Principal Findings: Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line.</p> <p>Conclusions/Significance: Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.</p&gt

    Post-operative Psychosocial Predictors of Outcome in Bariatric Surgery

    Get PDF
    Although there are several recent reviews of the pre-operative factors that influence treatment outcome for bariatric surgery, commensurate efforts to identify and review the predictive validity of post-operative variables are lacking. This review describes the post-operative psychosocial predictors of weight loss in bariatric surgery. Results suggest empirical support for post-operative binge eating, uncontrolled eating/grazing, and presence of a depressive disorder as negative predictors of weight loss outcomes; whereas, adherence to dietary and physical activity guidelines emerged as positive predictors of weight loss. With the exception of depression, psychological comorbidities were not consistently associated with weight loss outcomes. Results highlight the need for post-operative assessment of disordered eating and depressive disorder, further research on the predictive value of post-operative psychosocial factors, and development of targeted interventions

    Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Cuscuta </it>L. (Convolvulaceae), commonly known as dodders, are epiphytic vines that invade the stems of their host with haustorial feeding structures at the points of contact. Although they lack expanded leaves, some species are noticeably chlorophyllous, especially as seedlings and in maturing fruits. Some species are reported as crop pests of worldwide distribution, whereas others are extremely rare and have local distributions and apparent niche specificity. A strong phylogenetic framework for this large genus is essential to understand the interesting ecological, morphological and molecular phenomena that occur within these parasites in an evolutionary context.</p> <p>Results</p> <p>Here we present a well-supported phylogeny of <it>Cuscuta </it>using sequences of the nuclear ribosomal internal transcribed spacer and plastid <it>rps2</it>, <it>rbcL </it>and <it>matK </it>from representatives across most of the taxonomic diversity of the genus. We use the phylogeny to interpret morphological and plastid genome evolution within the genus. At least three currently recognized taxonomic sections are not monophyletic and subgenus <it>Cuscuta </it>is unequivocally paraphyletic. Plastid genes are extremely variable with regards to evolutionary constraint, with <it>rbcL </it>exhibiting even higher levels of purifying selection in <it>Cuscuta </it>than photosynthetic relatives. Nuclear genome size is highly variable within <it>Cuscuta</it>, particularly within subgenus <it>Grammica</it>, and in some cases may indicate the existence of cryptic species in this large clade of morphologically similar species.</p> <p>Conclusion</p> <p>Some morphological characters traditionally used to define major taxonomic splits within <it>Cuscuta </it>are homoplastic and are of limited use in defining true evolutionary groups. Chloroplast genome evolution seems to have evolved in a punctuated fashion, with episodes of loss involving suites of genes or tRNAs followed by stabilization of gene content in major clades. Nearly all species of <it>Cuscuta </it>retain some photosynthetic ability, most likely for nutrient apportionment to their seeds, while complete loss of photosynthesis and possible loss of the entire chloroplast genome is limited to a single small clade of outcrossing species found primarily in western South America.</p

    "It's what midwifery is all about": Western Australian midwives' experiences of being 'with woman' during labour and birth in the known midwife model

    Get PDF
    Background: The phenomenon of being 'with woman' is fundamental to midwifery as it underpins its philosophy, relationships and practices. There is an identified gap in knowledge around the 'with woman' phenomenon from the perspective of midwives providing care in a variety of contexts. As such, the aim of this study was to explore the experiences of being 'with woman' during labour and birth from the perspective of midwives' working in a model where care is provided by a known midwife. Methods: A descriptive phenomenological design was employed with ten midwives working in a 'known midwife' model who described their experiences of being 'with woman' during labour and birth. The method was informed by Husserlian philosophy which seeks to explore the same phenomenon through rich descriptions by individuals revealing commonalities of the experience. Results: Five themes emerged 1) Building relationships; 2) Woman centred care; 3) Impact on the midwife; 4) Impact on the woman; and 5) Challenges in the Known Midwife model. Midwives emphasised the importance of trusting relationships while being 'with woman', confirming that this relationship extends beyond the woman - midwife relationship to include the woman's support people and family. Being 'with woman' during labour and birth in the context of the relationship facilitates woman-centred care. Being 'with woman' influences midwives, and, it is noted, the women that midwives are working with. Finally, challenges that impact being 'with woman' in the known midwife model are shared by midwives. Conclusions: Findings offer valuable insight into midwives' experiences of being 'with woman' in the context of models that provide care by a known midwife. In this model, the trusting relationship is the conduit for being 'with woman' which influences the midwife, the profession of midwifery, as well as women and their families. Descriptions of challenges to being 'with woman' provide opportunities for professional development and service review. Rich descriptions from the unique voice of midwives, provided insight into the applied practices of being 'with woman' in a known midwife model which adds important knowledge concerning a phenomenon so deeply embedded in the philosophy and practices of the profession of midwifery

    Probing the low-redshift star formation rate as a function of metallicity through the local environments of type II supernovae

    Full text link
    Type II SNe can trace star formation to probe its global metallicity distribution at low-redshift. We present oxygen and iron abundance distributions of SN II progenitor regions that avoid many previous sources of bias. Because Fe (rather than O) abundance drives the late stage evolution of the massive stars that are the progenitors of CCSNe, and because Fe enrichment lags O enrichment, we find a general conversion from O abundance to Fe abundance. The distributions we present here are the best yet standard of comparison for evaluating how rare classes of SNe depend on progenitor metallicity. We measure the gas-phase O abundance of a representative subsample of the hosts of SNe II from the first-year PTF SN search, using a combination of SDSS spectra near the SN location (9) and new long slit spectroscopy (25). The median metallicity of these 34 hosts is 12+log(O/H) = 8.65, with a median error of 0.09. The median host galaxy stellar mass from fits to SDSS photometry is 10^9.9 solar masses. They do not show a systematic offset in metallicity or mass from a redshift-matched sample of the MPA/JHU value-added catalog. In contrast to previous SN host metallicity studies, this sample is drawn from a single, areal survey. SNe in the lowest-mass galaxies are not systematically excluded. The metallicity distribution we find is statistically indistinguishable from the metallicity distribution of SN II hosts found by targeted surveys and by samples from multiple surveys with different selection functions. Using the relationship between Fe and O abundances found for Milky Way disk, bulge, and halo stars, we translate our O abundance distribution of SN II environments into Fe abundance estimates. We find that though this sample spans only 0.65 dex in O abundance, the gap between the Fe and O abundance is 50% wider at the low-metallicity end of our sample than at the high-metallicity end. (abridged)Comment: 22 pages, 14 figures, 7 tables, ApJ accepte

    IL-22 Production Is Regulated by IL-23 During Listeria monocytogenes Infection but Is Not Required for Bacterial Clearance or Tissue Protection

    Get PDF
    Listeria monocytogenes (LM) is a gram-positive bacterium that is a common contaminant of processed meats and dairy products. In humans, ingestion of LM can result in intracellular infection of the spleen and liver, which can ultimately lead to septicemia, meningitis, and spontaneous abortion. Interleukin (IL)-23 is a cytokine that regulates innate and adaptive immune responses by inducing the production of IL-17A, IL-17F, and IL-22. We have recently demonstrated that the IL-23/IL-17 axis is required for optimal recruitment of neutrophils to the liver, but not the spleen, during LM infection. Furthermore, these cytokines are required for the clearance of LM during systemic infection. In other infectious models, IL-22 induces the secretion of anti-microbial peptides and protects tissues from damage by preventing apoptosis. However, the role of IL-22 has not been thoroughly investigated during LM infection. In the present study, we show that LM induces the production of IL-22 in vivo. Interestingly, IL-23 is required for the production of IL-22 during primary, but not secondary, LM infection. Our findings suggest that IL-22 is not required for clearance of LM during primary or secondary infection, using both systemic and mucosal models of infection. IL-22 is also not required for the protection of LM infected spleens and livers from organ damage. Collectively, these data indicate that IL-22 produced during LM infection must play a role other than clearance of LM or protection of tissues from pathogen- or immune-mediated damage

    Dependence of Bacterial Chemotaxis on Gradient Shape and Adaptation Rate

    Get PDF
    Simulation of cellular behavior on multiple scales requires models that are sufficiently detailed to capture central intracellular processes but at the same time enable the simulation of entire cell populations in a computationally cheap way. In this paper we present RapidCell, a hybrid model of chemotactic Escherichia coli that combines the Monod-Wyman-Changeux signal processing by mixed chemoreceptor clusters, the adaptation dynamics described by ordinary differential equations, and a detailed model of cell tumbling. Our model dramatically reduces computational costs and allows the highly efficient simulation of E. coli chemotaxis. We use the model to investigate chemotaxis in different gradients, and suggest a new, constant-activity type of gradient to systematically study chemotactic behavior of virtual bacteria. Using the unique properties of this gradient, we show that optimal chemotaxis is observed in a narrow range of CheA kinase activity, where concentration of the response regulator CheY-P falls into the operating range of flagellar motors. Our simulations also confirm that the CheB phosphorylation feedback improves chemotactic efficiency by shifting the average CheY-P concentration to fit the motor operating range. Our results suggest that in liquid media the variability in adaptation times among cells may be evolutionary favorable to ensure coexistence of subpopulations that will be optimally tactic in different gradients. However, in a porous medium (agar) such variability appears to be less important, because agar structure poses mainly negative selection against subpopulations with low levels of adaptation enzymes. RapidCell is available from the authors upon request
    corecore