1,768 research outputs found

    NIST torsion oscillator viscometer response: Performance on the LeRC active vibration isolation platform

    Get PDF
    Critical point viscosity measurements are limited to their reduced temperature approach to T(sub c) in an Earth bound system, because of density gradients imposed by gravity. Therefore, these classes of experiments have been proposed as good candidates for 'microgravity' science experiments where this limitation is not present. The nature of these viscosity measurements dictate hardware that is sensitive to low frequency excitations. Because of the vibratory acceleration sensitivity of a torsion oscillator viscometer, used to acquire such measurements, a vibration isolation sensitivity test was performed on candidate 'microgravity' hardware to study the possibility of meeting the stringent oscillatory sensitivity requirements of a National Institute of Standards and Technology (NIST) torsion oscillator viscometer. A prototype six degree of freedom active magnetic isolation system, developed at NASA Lewis Research Center, was used as the isolation system. The ambient acceleration levels of the platform were reduced to the noise floor levels of its control sensors, about one microgravity in the 0.1 to 10 Hz bandwidth

    Internal Waves in CVX

    Get PDF
    Near the liquid-vapor critical point, density stratification supports internal gravity waves which affect 1-g viscosity measurements in the CVX (Critical Viscosity of Xenon) experiment. Two internal-wave modes were seen in the horizontal viscometer. The frequencies of the two modes had different temperature dependences: with decreasing temperature, the higher frequency increased monotonically from 0.7 to 2.8 Hz, but the lower frequency varied non-monotonically, with a maximum of 1.0 Hz at 20 mK above the critical temperature. The measured frequencies agree with independently calculated frequencies to within 15%

    Hydrodynamic Force on a Cylinder Oscillating at Low Frequency

    Get PDF
    The hydrodynamic force on a cylinder oscillating transversely to its axis is a nonlinear function of the displacement amplitude x0. We report measurements and numerical calculations of the force at frequencies low enough that delta > R, where delta is the viscous penetration length and R is the cylinder radius. For small amplitudes, the numerically calculated Fourier transform of the force per unit length, F(sub small), agrees with Stokes' analytical calculation. For larger amplitudes, the force per unit length found by both calculation and measurement is F = F(sub small)C (x(sub 0)/delta,R/delta). The complex function C depends only weakly on R/delta, indicating that x0/delta is more appropriate as a scaling variable than the Keulegan-Carpenter number KC = pi*x(sub 0)/R. The measurements used a torsion oscillator driven at frequencies from 1 to 12 Hz while immersed in dense xenon. The oscillator comprised cylinders with an effective radius of R = 13.4 micron and oscillation amplitudes as large as x(sub 0)/delta = 4 (corresponding to KC as large as 71). The calculations used similar conditions except that the amplitudes were as large as x0/delta = 28

    Viscosity of Xenon Examined in Microgravity

    Get PDF
    Why does water flow faster than honey? The short answer, that honey has a greater viscosity, merely rephrases the question. The fundamental answer is that viscosity originates in the interactions between a fluid s molecules. These interactions are so complicated that, except for low-density gases, the viscosity of a fluid cannot be accurately predicted. Progress in understanding viscosity has been made by studying moderately dense gases and, more recently, fluids near the critical point. Modern theories predict a universal behavior for all pure fluids near the liquid-vapor critical point, and they relate the increase in viscosity to spontaneous fluctuations in density near this point. The Critical Viscosity of Xenon (CVX) experiment tested these theories with unprecedented precision when it flew aboard the Space Shuttle Discovery (STS-85) in August 1997. Near the critical point, xenon is a billion times more compressible than water, yet it has about the same density. Because the fluid is so "soft," it collapses under its own weight when exposed to the force of Earth s gravity - much like a very soft spring. Because the CVX experiment is conducted in microgravity, it achieves a very uniform fluid density even very close to the critical point. At the heart of the CVX experiment is a novel viscometer built around a small nickel screen. An oscillating electric field forces the screen to oscillate between pairs of electrodes. Viscosity, which dampens the oscillations, can be calculated by measuring the screen motion and the force applied to the screen. So that the fluid s delicate state near the critical point will not be disrupted, the screen oscillations are set to be both slow and small

    Increased accuracy of ligand sensing by receptor internalization

    Full text link
    Many types of cells can sense external ligand concentrations with cell-surface receptors at extremely high accuracy. Interestingly, ligand-bound receptors are often internalized, a process also known as receptor-mediated endocytosis. While internalization is involved in a vast number of important functions for the life of a cell, it was recently also suggested to increase the accuracy of sensing ligand as the overcounting of the same ligand molecules is reduced. Here we show, by extending simple ligand-receptor models to out-of-equilibrium thermodynamics, that internalization increases the accuracy with which cells can measure ligand concentrations in the external environment. Comparison with experimental rates of real receptors demonstrates that our model has indeed biological significance.Comment: 9 pages, 4 figures, accepted for publication in Physical Review

    Sub-Subgiants in the Old Open Cluster M67?

    Get PDF
    We report the discovery of two spectroscopic binaries in the field of the old open cluster M67 -- S1063 and S1113 -- whose positions in the color-magnitude diagram place them approximately 1 mag below the subgiant branch. A ROSAT study of M67 independently discovered these stars to be X-ray sources. Both have proper-motion membership probabilities greater than 97%; precise center-of-mass velocities are consistent with the cluster mean radial velocity. S1063 is also projected within one core radius of the cluster center. S1063 is a single-lined binary with a period of 18.396 days and an orbital eccentricity of 0.206. S1113 is a double-lined system with a circular orbit having a period of 2.823094 days. The primary stars of both binaries are subgiants. The secondary of S1113 is likely a 0.9 Mo main-sequence star, which implies a 1.3 Mo primary star. We have been unable to explain securely the low apparent luminosities of the primary stars; neither binary contain stars presently limited in radius by their Roche lobes. We speculate that S1063 and S1113 may be the products of close stellar encounters involving binaries in the cluster environment, and may define alternative stellar evolutionary tracks associated with mass-transfer episodes, mergers, and/or dynamical stellar exchanges

    Web-based physiotherapy for people affected by multiple sclerosis: a single blind, randomized controlled feasibility study

    Get PDF
    Objective: To examine the feasibility of a trial to evaluate web-based physiotherapy compared to a standard home exercise programme in people with multiple sclerosis. Design: Multi-centre, randomized controlled, feasibility study. Setting: Three multiple sclerosis out-patient centres. Participants: A total of 90 people with multiple sclerosis (Expanded Disability Status Scale 4–6.5). Interventions: Participants were randomized to a six-month individualized, home exercise programme delivered via web-based physiotherapy (n = 45; intervention) or a sheet of exercises (n = 45; active comparator). Outcome measures: Outcome measures (0, three, six and nine months) included adherence, two-minute walk test, 25 foot walk, Berg Balance Scale, physical activity and healthcare resource use. Interviews were undertaken with 24 participants and 3 physiotherapists. Results: Almost 25% of people approached agreed to take part. No intervention-related adverse events were recorded. Adherence was 40%–63% and 53%–71% in the intervention and comparator groups. There was no difference in the two-minute walk test between groups at baseline (Intervention-80.4(33.91)m, Comparator-70.6(31.20)m) and no change over time (at six-month Intervention-81.6(32.75)m, Comparator-74.8(36.16)m. There were no significant changes over time in other outcome measures except the EuroQol-5 Dimension at six months which decreased in the active comparator group. For a difference of 8(17.4)m in two-minute walk test between groups, 76 participants/group would be required (80% power, P > 0.05) for a future randomized controlled trial. Conclusion: No changes were found in the majority of outcome measures over time. This study was acceptable and feasible by participants and physiotherapists. An adequately powered study needs 160 participants

    Antithrombotic Management in Adult Kidney Transplantation: A European survey study

    Get PDF
    In kidney transplantation (KTx), renal graft thrombosis (RGT) is one of the main reasons for early graft loss. Although evidence-based guidance on prevention of RGT is lacking, thromboprophylaxis is widely used. The aim of this survey was to obtain a European view of the different thromboprophylactic strategies applied in KTx. An online 22-question survey, addressed to KTx professionals, was distributed by email and via platforms of the European Society for Organ Transplantation. Seventy-five responses (21 countries, 51 centers) were received: 75% had over 10 years' clinical experience, 64% were surgeons, 29% nephrologists, and 4% urologists. A written antithrombotic management protocol was available in 75% of centers. In 8 (16%) centers, respondents contradicted each other regarding the availability of a written protocol. Thromboprophylaxis is preferred by 78% of respondents, independent of existing antithrombotic management protocols. Ninety-two percent of respondents indicated that an anticipated bleeding risk is the main reason to discontinue chronic antithrombotic therapy preoperatively. Intraoperatively, 32% of respondents administer unfractionated heparin (400-10,000 international units with a median of 5,000) in selected cases. Despite an overall preference for perioperative thromboprophylaxis in KTx, there is a high variation within Europe regarding type, timing, and dosage, most likely due to the paucity of high-quality studies. Further research is warranted in order to develop better guidelines.</p
    • …
    corecore