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Hydrodynamic force on a cylinder
oscillating at low frequency

19 January 2005

Abstract

The hydrodynamic force on a cylinder oscillating transversely to its axis is a nonlin-
ear function of the displacement amplitude x0. We report measurements and numerical
calculations of the force at frequencies low enough that δ > R, where δ is the viscous
penetration length and R is the cylinder radius. For small amplitudes, the numerically
calculated Fourier transform of the force per unit length, F̂small, agrees with Stokes’
analytical calculation. For larger amplitudes, the force per unit length found by both
calculation and measurement is F̂ = F̂smallC (x0/δ, R/δ). The complex function C
depends only weakly on R/δ, indicating that x0/δ is more appropriate as a scaling
variable than the Keulegan-Carpenter number KC = πx0/R. The measurements used
a torsion oscillator driven at frequencies from 1 to 12 Hz while immersed in dense
xenon. The oscillator comprised cylinders with an effective radius of R = 13.4 μm
and oscillation amplitudes as large as x0/δ = 4 (corresponding to KC as large as 71).
The calculations used similar conditions except that the amplitudes were as large as
x0/δ = 28.
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1 Introduction

Small transverse oscillations of a cylinder will generate a flow that is periodic and effectively

two-dimensional. Describing the resulting force on the cylinder requires two independent

variables because the oscillation frequency f = ω/2π can be varied independently of the

velocity. The most frequent choices for the two variables are the Keulegan-Carpenter number,

KC = π
x0
R
, (1)

which compares the oscillation amplitude x0 to the cylinder radius R, and the Stokes viscous

parameter,

β =
4

π

µ
R

δ

¶2
, (2)

which compares the cylinder radius to the viscous penetration length defined by

δ =

r
2η

ρω
, (3)

where η and ρ are the viscosity and density.

The chief result of this paper is that, when δ > R (or β < 1), the scaling variable most

appropriate for describing the hydrodynamic nonlinearity is the reduced length

x0
δ
=

r
β

4π
KC. (4)
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This choice minimizes the dependence on the second variable. We support this result with

a simple scaling argument, numerical calculations, and experimental measurements. Figure

1 indicates the previously unexplored region of KC and β spanned by the present measure-

ments and shows the locations of several familiar oscillators.

This work was made in preparation for an experiment, called “Critical Viscosity of

Xenon” (CVX-2), that measured the shear thinning predicted to occur near the liquid-

vapor critical point [15]. Shear thinning caused the response of the CVX-2 viscometer to

be nonlinear, but the convective term of the Navier-Stokes equation caused a much larger

nonlinearity [16]. To understand the larger nonlinearity we calculated and measured the os-

cillator’s response when the xenon was far from the critical point and had no shear thinning.

CVX-2 flew on board Space Shuttle Columbia in 2003. The microgravity in Earth orbit

was necessary to obtain the homogeneity of density and temperature sufficient to observe

shear thinning. For the forseeable future, the CVX-2 results will likely be the only data on

shear thinning in a simple pure fluid. Correctly interpreting those data, as well as addressing

the classic problem of an oscillating cylinder, motivated the present study.

The experimental frequencies used by CVX-2 (1 to 12 Hz) corresponded to δ > R (or β <

1). With one exception [11], previous investigations dealing with the force on the cylinder,

the surrounding flow patterns, or both [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] have examined flows with

KC similar to or smaller than those used here, but the values of β were always much larger

than 1. (The steady streaming induced by an oscillating cylinder is not addressed here.)

Large values of β occur in practical applications such as pilings for oil drilling platforms, and
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they are compatible with the usual boundary-layer assumption that δ ¿ R. In contrast, the

present results are in the range 0.01 < β < 0.2, which means that δ > R.

The exception is the numerical work by Morfey and Tan [11], which examined the range

10−6 ≤ β ≤ 0.3. Their calculations were motivated by the attenuation of large-amplitude

sound in fibrous blankets. More discussion?

Figure 1 can be related to the flow visualization study by Tatsuno and Bearman [10].

In the range defined by 1.6 < KC < 15 and 5 < β < 160 they found eight regimes of flow

patterns. Only two regimes, which they called A and A∗, were two-dimensional. Figure 2

shows that the curve x0/δ = 7 approximately bounds regimes A and A
∗. As shown in Figure

1, an extrapolation of that boundary to small β indicates that the present experimental

results were obtained within the two-dimensional regime.

This paper studies the viscous force per unit length F (t) that opposes the motion of a

cylinder whose time dependent displacement is

x (t) = Re
£
x0e

iωt
¤
. (5)

For small amplitudes, the Navier-Stokes equation reduces to the unsteady Stokes equation,

and the force is periodic and proportional to x0. The proportionality allows the F (t) to be

written as the product of the fluid mass per unit length displaced by the oscillator πR2ρ,

the oscillator’s acceleration amplitude ω2x0, and a dimensionless reduced force B (R/δ) as
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follows [12].

F (t) ≡ Re
h
F̂small (f) e

iωt
i
= Re

∙
−i
¡
πR2ρω2x0

¢
B

µ
R

δ

¶
eiωt
¸

(6)

This form is convenient for an oscillator used as a viscometer because δ can be varied by

changing the frequency while the oscillator is immersed in a fluid of known density and vis-

cosity. The choice of R used in B (R/δ) is arbitrary; therefore, measuring the Fourier trans-

form F̂small (f) while varying the frequency yields the calibration function B (R/δ) without

knowledge of the oscillator’s geometry. Figure 3 shows the magnitude and phase of B (R/δ)

measured for the present experimental oscillator at small amplitudes [13]. Also shown is

Stokes’ solution for a cylinder with a circular cross section. Its modern formulation [14] is

Bcyl

µ
R

δ

¶
= − (k0 + ik) = i

∙
1 +

4K1 (z)

zK0 (z)

¸
, (7)

where Kn (z) is the modified Bessel function of order n, and z ≡ (1 + i) (R/δ). Here and in

the remainder of this paper, we will use R/δ instead of β to make clear the role of δ.

For moderate amplitudes, the flow remains periodic, but the force on the cylinder is no

longer proportional to x0. Therefore we generalized Eq.(6) by multiplying the reduced force

B by a complex function C that depends on reduced amplitude x0/δ as well as R/δ.

F̂ (f) = F̂small (f)C

µ
x0
δ
,
R

δ

¶
(8)
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The amplitude function C, which describes our numerical and experimental results, is written

as a function of x0/δ instead of KC. Figure 4 illustrates how choosing x0/δ for the first

variable minimizes the dependence on the second variable R/δ. The magnitude and phase

of C numerically calculated for a circular cylinder are each described approximately by a

single function of x0/δ.

The following section describes a simple analytical argument that supports the impor-

tance of x0/δ as a scaling variable. Following that is a section that describes numerical

calculations for the force on an oscillating circular cylinder. The final section compares the

experimental measurements to the numerical results.

2 Scaling of the Navier-Stokes equation

Imagine a solid body that oscillates in an incompressible fluid according to x (t) = x0 cos (ωt).

For small amplitudes x0, the velocity u and pressure p will be periodic everywhere in the

fluid. For moderately larger x0, the velocity and pressure will remain periodic, even though

harmonics and steady streaming may appear. Because there is a obvious time scale ω−1 one

can define dimensionless time, velocity, pressure, and spatial derivatives as follows.

t∗ ≡ ωt (9a)

u∗ ≡ u/ (ωx0) (9b)

p∗ ≡
L

ηωx0
p (9c)

∇∗ ≡ L∇ and ∇2
∗ ≡ L2∇2 (9d)
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Here ∗ indicates the dimensionless quantities. The characteristic length L is not yet iden-

tified, which precludes its use in a viscous time scale such as ρL2/η; doing so leads to an

ambiguous result. In terms of these dimensionless quantities, the Navier-Stokes equation is

∂u∗
∂t∗

+
x0
L
(u∗ ·∇∗)u∗ = −

δ

2L2
∇∗p∗ +

δ

2L2
∇2
∗u∗. (10)

This equation can be expressed in terms of a single dimensionless scaling variable by requiring

that

L ≡ δfL
³x0
δ

´
, (11)

where fL (x0/δ) is an arbitrary function of x0/δ. The simplest choice, L = δ, puts the

Navier-Stokes equation into the form

∂u∗
∂t∗

+
³x0
δ

´
(u∗ ·∇∗)u∗ =

1

2

£
−∇∗p∗ +∇2

∗u∗
¤
. (12)

Eq.(12) shows that the Navier-Stokes equation for a periodic flow can be scaled by the

reduced amplitude x0/δ if the scales chosen for time and length are respectively ω−1 and

δ. Note that x0/δ is equivalent to an “oscillatory Reynolds number” whose characteristic

velocity and length are respectively ωx0 and δ/2. Similar Reynolds number have been used

in discussions of streaming from oscillating bodies [17, 18].
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3 Calculations

3.1 Numerical model

The numerical model calculated the force on the experimental oscillator, which was con-

structed from a screen comprising many wires of noncircular cross section. (See Figure 5

and the Measurements section.) Four simplifications were used. First, we assumed that

the oscillator behaved as an assembly of isolated wires and therefore could be represented

by a single cylinder oscillating transversely to its axis. This approximation was reasonable

because the spacing between adjacent wires was much larger than the viscous penetration

length. Second, we assumed that the cross section of the wire could be represented by a

circle of appropriate diameter. Although Figure 5 shows that the actual cross section of the

screen wire was closer to a rectangle, numerical studies, illustrated in Figure 6, showed that

the effect of the cross-section shape was small. These first two simplifications reduced the

model to the classical flow problem of a rigid circular cylinder, surrounded by an otherwise

stationary incompressible Newtonian fluid, and oscillating sinusoidally in a direction normal

to its axis. See Figure 7.

The third simplification assumed that the flow field was two-dimensional. An example of

three-dimensional flow is Tatsuno and Bearman’s regime B, where counter-rotating vortices

appear alternately along the cylinder axis [10]. The fourth simplification assumed that

the flow field had reflection symmetry about the oscillation direction. Both simplifications

were consistent with the patterns seen in Tatsuno and Bearman’s flow regimes A and A∗,

although the extrapolated boundary in Figure 1 suggests that real flows with x0/δ > 7 may
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be three-dimensional.

The values of density (ρ = 1116 kg·m−3) and viscosity (η = 52 μPa·s) were similar

to those of the experimental measurements. (Some test calculations used η = 72 μPa·s.)

The value of the cylinder radius (R = 13.4 μm) was similar to the half width of a single

screen wire. The range of oscillation frequencies, 0.5 ≤ f ≤ 12 Hz, included the experimental

frequencies, but the largest amplitude of x0 = 1000 μm exceeded the experimental amplitude

at all frequencies.

We used the moving reference frame approach described in Appendix A to handle the

oscillatory motion of the cylinder. This approach transforms the original moving boundary

problem into a fixed domain problem in which the cylinder is stationary and surrounded

by oscillating fluid. To find the force F (t) on the cylinder in the laboratory reference

frame, we first computed the corresponding force F 0 (t) in the moving reference frame. We

then removed the spurious force due to the non-inertial frame by applying the correction

prescribed in Eq.(33). The moving reference frame eliminates the need for re-meshing at

each time step. In a stationary reference frame, the re-meshing cannot prevent distortion of

the mesh, and the distortion at large oscillation amplitude makes convergence of the solution

difficult.

3.2 Numerical Techniques

The fourth simplification mentioned above assumed that the solution had reflection symme-

try about the laboratory x-axis passing through a diameter of the cylinder. Consequently,
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the computational flow domain included only the upper half of the actual flow field defined

by the width −w ≤ x0 ≤ w, the height 0≤ y0 ≤ h, and the top half surface of the circle.

The computational domain and the boundary conditions are depicted in Figure 7. The size

of the computational domain was w = h = 2000R for all of the oscillation frequencies and

amplitudes.

The governing equations in the moving reference frame were solved using POLYFLOW

[19], a commercial finite element method (FEM) program designed primarily for laminar, vis-

cous flows involving complex rheology and free surfaces. Details of the FEM formulation and

numerical techniques used in POLYFLOW are documented in [20]. Galerkin’s method was

adopted in the FEM discretization for the momentum equations, and the two-dimensional

FEM mesh was built with 9-node, quadratic, quadrilateral elements, in which the veloc-

ity was approximated by quadratic shape functions. The pressure was approximated as

piecewise-linear and discontinuous on inter-element boundaries.

No-slip boundary conditions were used at the cylinder surface. Fine grading of the mesh

was necessary near the cylinder due to the strong radial dependences of velocity and stress in

that region. Numerical studies of those dependences led us to give the FEM mesh elements

next to the cylinder the small size ∆1 = R/158. The mesh grading away from the cylinder

surface was controlled by fixing the ratio q of successive element sizes, defined as

q ≡ ∆j/∆j+1 = 0.6. (13)

Here ∆j is the characteristic length of element j, and j increases with radial distance from

NASA/CR—2007-215050 10



the cylinder. Figure 8 illustrates the mesh grading.

The transient problem was solved by a predictor-corrector time integration scheme in

which the second-order Crank-Nicholson method was selected for the corrector. At each time

step, the non-linear algebraic system resulting from the FEM discretization was solved by

the Newton-Raphson iteration scheme. Termination of the nonlinear iteration was controlled

by an iteration convergence tolerance of 10−4 for the relative error norms of the residuals of

the governing equations. For each simulation, we calculated the transient solution for 600

time steps, yielding a total of 6 complete oscillation cycles. Steady state was achieved after

4 complete oscillation cycles, so the fifth and sixth oscillation cycles were used to determine

the Fourier coefficients of the force on the cylinder.

The velocity u0 = x0ω sin (ωt) imposed at the domain boundaries was sinusoidal at

frequency ω. However, the resulting force on the cylinder F (t), after correcting for the

moving reference frame, contained harmonics for large amplitudes x0.

F (t) = a0 +
∞X
n=1

[bn cos (nωt)− an sin (nωt)] , (14)

Several recent analyses [21, 22, 23, 24, 25, 26] of large-amplitude shear viscometry decom-

posed the non-linear force into a series of harmonic functions in a similar manner. The

discrete Fourier analysis of F (t) was transformed into a general linear least-squares curve

fitting problem and solved using the singular value decomposition algorithm described in

[27]. A total of 41 terms in Eq.(14) were used to fit the Fourier coefficients an and bn with

n = 0, 1, · · · , 20. Numerical tests indicated that the accuracy of the Fourier coefficients

NASA/CR—2007-215050 11



fitted by the singular value decomposition algorithm was satisfactory. This paper discusses

the results at only the fundamental frequency (n = 1) because the harmonics were small.

The magnitude at 3ω never exceeded 7 % of that at ω, and the magnitudes of higher odd

harmonics were 1 % or smaller. The magnitudes for all even harmonics (2ω, 4ω, ...) were

insignificant.

3.3 Validation

When x0 ¿ R, the force on the oscillating circular cylinder can be calculated with Stokes’

analytical solution. If the cylinder moves according to x (t) = x0 cos (ωt), the opposing force

per unit length is

F (t) = −a1 sin (ωt) + b1 cos (ωt) = Re
£
(b1 + ia1) e

iωt
¤
, (15)

where

a1
πR2ρω2x0

= Re [Bcyl] and
b1

πR2ρω2x0
= − Im [Bcyl] . (16)

We estimated the accuracy of the numerical solutions at small amplitude by comparing

them with the analytical solutions. Table 1 shows example results for three values of the

mesh grading ratio q. The value q = 0.60 reduced the errors for a1 and b1 to less than 0.06 %

of the magnitude for all frequencies. (Fortuitous cancellations made the magnitude errors

even smaller.)

NASA/CR—2007-215050 12



Table 1. Small-amplitude comparisons between Stokes’ analytical solution and
numerical solutions using three mesh grading ratios q. The Fourier coefficients
a1 and b1 of the force on the circular cylinder were calculated for ρ = 1116 kg/m

3

and η = 72 μPa·s at f = 1 Hz. The cylinder radius and oscillation amplitude
were 13.4 μm and 1 μm respectively. The errors are relative to the magnitudep
a21 + b

2
1.

mesh a1×106 error b1×106 error
p
a21 + b

2
1×106 error

q = 0.80 —2.38163 1.18 % 0.835909 1.01 % 2.52407 1.45 %
q = 0.65 —2.35201 —0.01 % 0.810190 —0.03 % 2.48764 —0.02 %
q = 0.60 —2.35270 0.02 % 0.810376 —0.02 % 2.48836 0.01 %

Stokes solution —2.35227 0.810815 2.48809

The effect of mesh grading was studied at large amplitude also. Table 2 compares the

result for q = 0.60 to those obtained for coarser meshes. As with the small-amplitude

comparisons, the results are nearly independent of q for q ≤ 0.65. The present results were

obtained with q = 0.60, so the uncertainty due to that mesh size is likely less than 0.1 %.

Table 2. Large-amplitude comparisons between numerical solutions using three mesh
grading ratios q. The Fourier coefficients a1 and b1 of the force on the circular cylinder were
calculated for η = 52 μPa·s at f = 12 Hz and x0 = 1000 μm. The differences from the
q = 0.60 result are relative to the magnitude

p
a21 + b

2
1.

mesh a1×106 difference b1×106 difference
p
a21 + b

2
1×106 difference

q = 0.80 —139.0283 8.76 % 43.01326 8.92 % 145.5301 10.82 %
q = 0.65 —127.4870 —0.03 % 31.14365 —0.13 % 131.2359 —0.06 %
q = 0.625 —127.4856 —0.03 % 31.21592 —0.07 % 131.2517 0.05 %
q = 0.60 —127.5294 31.30997 131.3166

The effect of domain size was studied by truncating the domain lengths L and H from

2000R to 500R. At f = 1 Hz and x0 = 1000 μm, the reduction changed a1 and b1 by only

0.02 %.
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3.4 Numerical results

Figure 9 shows examples of the flow field near the cylinder at three oscillation amplitudes

x0. The contours show constant values of the shear component of the rate-of-deformation

tensor, defined as Dxy = (∂u/∂y
0 + ∂v/∂x0) /2, where u and v are the velocity components

in the x0 and y0 directions.1

Tables 3 and 4 give the magnitude and phase of the Fourier-transformed force per unit

length F̂ (f) = b1 + ia1 normalized by πR2ρω2x0. The ranges of frequency and amplitude

include the experimental values.

Table 3. Magnitude of F̂ (f) / (πR2ρω2x0) computed for R = 13.4 μm, ρ = 1116
kg·m3, η = 52 μPa·s.

x0 (μm) 0.5 Hz 1 Hz 3 Hz 5 Hz 8 Hz 12 Hz
1 134.499 77.407 33.529 23.180 16.725 12.766
10 134.511 77.422 33.549 23.203 16.751 12.795
60 134.942 77.940 34.233 23.972 17.596 13.700
100 135.714 78.849 35.360 25.174 18.836 14.942
200 139.056 82.545 39.199 28.850 22.267 18.121
400 149.271 92.251 47.068 35.770 28.386 23.638
600 160.662 101.913 54.122 41.842 33.702 28.405
800 171.754 110.942 60.534 47.337 38.501 32.699
1000 182.308 119.391 66.477 52.429 42.955 36.692
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Table 4. Phase of F̂ (f) in radians.

x0 (μm) 0.5 Hz 1 Hz 3 Hz 5 Hz 8 Hz 12 Hz
1 -1.2592 -1.2196 -1.1407 -1.0964 -1.0509 -1.0079
10 -1.2593 -1.2198 -1.1414 -1.0976 -1.0530 -1.0111
60 -1.2626 -1.2268 -1.1638 -1.1346 -1.1093 -1.0889
100 -1.2682 -1.2383 -1.1945 -1.1778 -1.1635 -1.1496
200 -1.2901 -1.2768 -1.2623 -1.2520 -1.2365 -1.2166
400 -1.3391 -1.3387 -1.3249 -1.3078 -1.2846 -1.2596
600 -1.3736 -1.3726 -1.3526 -1.3329 -1.3097 -1.2880
800 -1.3963 -1.3934 -1.3701 -1.3507 -1.3298 -1.3113
1000 -1.4122 -1.4078 -1.3836 -1.3656 -1.3468 -1.3300

We now use the amplitude function C (x0/δ, R/δ) to plot the numerical results. Com-

bining Eqs.(6) and (8) gives

C ≡ |C| eiφ =

³
F̂ /x0

´
limx0→0

³
F̂ /x0

´ = (b1 + ia1)x0
x0

1 μm

(b1 + ia1)1 μm

. (17)

Dividing the ratio F̂ /x0 calculated at amplitude x0 by the ratio calculated at the smallest

amplitude of 1 μm gives the magnitude and phase of C. Figure 4 plots |C| and φ as functions

of reduced amplitude. The points have some scatter because R/δ varied by a factor of
√
24

when the frequency was varied from 0.5 Hz to 12 Hz. The relatively small scatter shows that

the dependence of C on R/δ is weak.

We obtained a correction for the dependence of C on R/δ that allowed better comparisons

between the results at different frequencies. This was done by reducing R from 13.4 μm to

6.7 μm and repeating the 5 Hz calculations. The reduction of R caused small decreases of

both |C| and φ, which allowed us to estimate the derivatives d |C| /dR and dφ/dR. Figure

10 shows that plotting these derivatives as functions of x0/δ suggests empirical forms for the

dependence of C on R/δ.
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The plot of d |C| /dR showed that the dependence of |C| on R/δ could be approximately

described by

1

|C|
∂ |C|

∂ (R/δ)
' |C|− 1

2
. (18)

Solving this differential equation yields

¯̄̄̄
C

µ
x0
δ
,
R

δ

¶¯̄̄̄
=

∙
1− C0

³x0
δ

´
exp

µ
R

2δ

¶¸−1
, (19)

where C0 (x0/δ) is an undetermined function. Similarly, the plot of φ showed that the

dependence of φ on R/δ could be approximately described by

∂φ

∂ (R/δ)
' φ. (20)

Solving for φ yields

φ

µ
x0
δ
,
R

δ

¶
= Cφ

³x0
δ

´
exp

µ
R

δ

¶
, (21)

where Cφ (x0/δ) is an undetermined function.

Eqs.(19) and (21) use known functions of R/δ to describe the dependence of C on R/δ.

Therefore, the value of C calculated (or measured) for an oscillating cylinder of reduced

amplitude x0/δ and reduced radius R/δ can be adjusted to the value of C expected at the

same x0/δ but different R/δ. This adjustment is useful because it allows a calculation of C
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obtained at one frequency to be compared to a calculation obtained at a different frequency

by adjusting the calculations to a common “reference” value (R/δ)ref. The most convenient

reference is (R/δ)ref = 0, which corresponds to the limit of infinitesimally small radius or,

equivalently, infinitesimally small frequency. The following equations adjust C (x0/δ, R/δ)

to C (x0/δ, 0).

¯̄̄
C
³x0
δ
, 0
´¯̄̄

=

½
1−

∙
1− 1

|C (x0/δ, R/δ)|

¸
exp

µ
−R
2δ

¶¾−1
(22a)

φ
³x0
δ
, 0
´
= φ

µ
x0
δ
,
R

δ

¶
exp

µ
−R

δ

¶
(22b)

Figure 11 uses Eq.(22) to plot the magnitude and phase of C (x0/δ, 0) as a function of

x0/δ. Using (R/δ)ref = 0 improved the consistency of the results for x0/δ < 10, especially

in the phase. For larger x0/δ, the magnitude results are inconsistent by as much as 3 %.

The cause of this remaining inconsistency may be due to the approximations in Eqs.(18) and

(20). It is worth noting that, as indicated in Figure 1, the data for x0/δ > 7 lie outside the

boundary extrapolated from Tatsuno & Bearman’s regimes A and A∗.

Note the initial quadratic behavior of |C| and φ in Figures 4 and 11. Such behavior is

expected because an expansion of C about x0/δ = 0 must include only terms even in x0/δ;

otherwise the value of C would depend on the sign of x0. The initial quadratic behavior

was built into the curves drawn in Figure 11. These empirical descriptions of the numerical
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results are given by Eq.(23), where b0 = 4.3, c0 = 36, aφ = 4, bφ = 3.5, and cφ = 36.

¯̄̄
C
³x0
δ
, 0
´¯̄̄

' 1 +

"
b0

(x0/δ)
1/2
+

c0

(x0/δ)
2

#−1
(23a)

φ
³x0
δ
, 0
´
' −

"
aφ +

bφ

(x0/δ)
1/2
+

cφ

(x0/δ)
2

#−1
(23b)

4 Measurements

4.1 Experimental method

The oscillator and xenon sample were the same as for the CVX experiment [13]. The density

was fixed at xenon’s critical density (ρ = 1116 kg·m−3) by sealing the sample cell, and the

viscosity was fixed near η = 52 μPa·s by controlling the temperature near 295 K. A brief

description of the apparatus is given below, and a detailed description can be found in [13].

A later publication will describe the electronic modifications made for CVX-2 that allowed

operation at large x0 [16].

Figure 5 indicates the geometry of the oscillator. The oscillator was an 8 × 19 mm

rectangle of screen that was cut out of a larger piece of nickel screen. The screen consisted of

a square grid of wires formed by electrodeposition. When the screen was cut, one wire was

left extending from the middle of both of the rectangle’s long edges. These two extensions

served as torsion springs, and they were soldered to a stiff yoke that was centered between

four electrodes placed parallel to the screen. While immersed in the xenon, the screen was

driven to oscillate much like a child’s seesaw.
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The viscous penetration length was always in the range 35 μm < δ < 122 μm. Thus δ was

larger than the width of a screen wire (30 μm), but much less than the distance between wires

(847 μm). Figure 5 shows that the cross section of a typical screen wire was approximately

an 8 × 30 μm rectangle. Despite the wire’s noncircular cross section, Figure 3 shows that

the drag on the screen resembled that of an assembly of isolated circular cylinders. Using

the value R = 13.4 μm in Stokes’ analytical function Bcyl (R/δ) approximately describes the

experimental values obtained for B (R/δ) at small amplitude.

The oscillator was driven electrostatically at 1, 3, 5, 8, and 12 Hz. Four electrodes

surrounding the oscillator (not shown in Figure 5) simultaneously applied combinations of

a DC voltage VDC and a sinusoidal voltage Vin (t) = V0 sin (ωt). The resulting torque on the

oscillator was

N (t) = K

∙
Vin (t)

VDC
+
xtip (t)

xgap

¸
, (24)

where xtip (t) is the displacement at the oscillator’s tip, and xgap ' 4 mm is the length of the

gap between the oscillator and one electrode. The dimensionless calibration factor K was

adjusted so that the values of B (R/δ) obtained for small x0 agreed with those determined

earlier for the CVX experiment [13], which also were made at small x0.

The apparatus used for the present measurements differed from the CVX experiment in

that the drive voltages VDC and Vin (t) were larger and the time dependence of Vin (t) was

a single frequency instead of a frequency chirp. In particular, the second term of Eq.(24),

which caused the electrostatic torque to increase linearly with the oscillator’s tip displacement
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xtip (t), was more significant. The result was a negative contribution to the oscillator’s spring

constant, which the analysis handled by decreasing the oscillator’s resonance frequency by

approximately 1 Hz from its vacuum value of 11 Hz. Terms of order (xtip (t) /xgap)
2 and higher

were not included in Eq.(24) because the oscillator’s small amplitude and the approximate

symmetry of the electrode pairs made them negligible.

The oscillator’s time-dependent angular displacement θ (t) was detected by the unbalance

of a capacitance bridge operating at 10 kHz. The out-of-balance signal was fed to a lock-in

amplifier, which generated a voltage whose oscillating component Vout (t) was proportional

to θ (t):

θ (t) = θ0 cos (ωt) =
1

rtip

µ
dxtip
dVout

¶
Vout (t) . (25)

Here, rtip is the distance from the torsion axis to the oscillator’s tip. Video images of

the oscillator were used to measure the derivative dxtip/dVout = (53.1± 1.2) μm/V. The

resolution of the images dominated the uncertainty of this result.

The oscillator’s response was defined as the Fourier transform θ̂ (f) of the angular dis-

placement divided by the Fourier transform N̂ (f) of the applied torque.

G (f, θ0) =
θ̂ (f)

N̂ (f)
=
K

rtip

µ
dxtip
dVout

¶
V̂out (f)

V̂in (f)
(26)

Here V̂in (f) and V̂out (f) are the Fourier transforms of the input and output voltages. (For

clarity, Eqs. (24) and (25) do not show the frequency-dependent corrections that account
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for the anelasticity of the oscillator’s spring constant and the gain and phase shifts of the

drive and detection circuits.)

The amplitude V0 and frequency f of the AC drive voltage determined the oscillation

amplitude x0. A determination of the hydrodynamic force at amplitude x0 comprised two

measurements. The first measurement used a drive torque sufficiently small that C = 1.

(Its amplitude of 1.1× 10−10 N·m was approximately that used in the small-amplitude CVX

experiment [13].) The second measurement used a torque that was larger by a factor of

either 20 or 33 to produce the oscillation amplitude x0. Due to the oscillator’s response, the

largest value of x0/δ was achieved at 3 Hz. Figure 12 indicates the sizes of x0 and δ at 3 Hz

relative to the wire cross section.

The present measurements were made sufficiently far above the critical temperature of

290 K that density stratification and internal waves were negligible. The viscosity was always

within 1% of the value used in the numerical calculations.

4.2 Experimental analysis and results

Each of the many wires comprised by the screen moved at a speed that depended on its

distance from the torsion axis. We focused on the wire located at the oscillator tip, whose

displacement was

xtip (t) = θ0rtip cos (ωt) = x0 cos (ωt) . (27)
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Comparing the experimental data to the numerical calculations at amplitude x0 required

five steps.

1. Eq.(34) in Appendix B was solved to convert the measured response G (f, θ0) to values

of Bosc (R/δ, θ0), which describes the hydrodynamics of the entire oscillator. Nonlin-

earity of the capacitive drive and detection required a correction that did not exceed

1.3 % of |G|.

2. Eq.(37) in Appendix B was used to convertBosc (R/δ, θ0) and its derivative with respect

to θ0 into the product [BC]exp that described the hydrodynamics of the oscillator tip.

The value of Bosc could not be compared directly to the numerical calculations because

the total torque on the oscillator was the weighted sum of torques from all parts of the

oscillator.

3. The value of C at the oscillator tip was obtained by dividing [BC]exp by B (R/δ) as

follows.

C

µ
x0
δ
,
R

δ

¶
=
[B (R/δ)C (x0/δ, R/δ)]exp

B (R/δ)
(28)

This approximated B (R/δ) for a single wire by the experimental value for the entire

oscillator Bosc (R/δ, θ0) measured at sufficiently small θ0. This approximation was

accurate because the value of θ0 used to determine B (R/δ) corresponded to x0/δ < 0.1.

4. The value of C was corrected for the noncircular shape of the wire’s cross section,

which was modeled as a rectangle with quarter-circle ends (30 μm width, 8 μm radii).
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The inset of Figure 6 indicates this shape, and the data show that the numerically

calculated differences in C due to shape are small (about 1 % at the experimental

maximum x0/δ = 4). The correction comprised interpolating functions fitted to the

magnitude and phase data shown in Figure 6. The resulting values of C corresponded

to the numerical calculations for a circle of 13.4 μm radius.

5. The value of C (x0/δ, R/δ) was converted to C (x0/δ, 0). Using the reference value

(R/δ)ref = 0 simplifies the comparison with the calculated values of C.

Figure 13 plots the measured magnitude and phase of C (x0/δ, 0). The abscissa is the

reduced displacement amplitude x0/δ = rtipθ0/δ, where rtip is distance of the oscillator’s

tip from its torsion axis. The angular oscillations were sufficiently small (θ0 < 0.05 rad)

that the tip motion was always effectively rectilinear. Also shown are curves that represent

the magnitude and phase of the calculated values of C (x0/δ, 0) shown in Figure 11. The

similarity of the measured and the calculated values is remarkable because the oscillator

wire’s actual cross section is far from circular. Clearly, the condition δ > R made the

viscous force insensitive to the shape of the wire’s cross section.

5 Concluding remarks

Hydrodynamic scaling, numerical calculations, and experiment all show that the reduced

force C on an oscillating cylinder depends chiefly on the scaling variable x0/δ when δ > R.

The dependences of C on the shape and size of the cylinder’s cross section are weak. Further
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work building on these results might answer the following questions.

• The scaling argument suggests that the force in a periodic flow field would scale as x0/δ

even if the field were three-dimensional. Would this be supported by measurements or

three-dimensional numerical calculations?

• Eqs.(18) and (20) describe the dependence of C on R/δ over a limited range of x0/δ.

Over what ranges of R/δ and x0/δ are these simple empirical forms valid?

• What is C for a linear viscoelastic fluid?

• Figure 1 shows that guitar strings and some insects oscillate near the boundary for

two-dimensional flow approximately defined by x0/δ = 7. Why?
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7 Appendix A: The moving reference frame approach

This approach allows the hydrodynamic force on the cylinder to be calculated within a (non-

inertial) reference frame that moves with the oscillating cylinder. In the laboratory (inertial)

reference frame, the cylinder’s velocity is

u0 (t) = Re

∙
d

dt
x0e

iωt

¸
= −x0ω sin (ωt) (29)

in the x-direction. At the cylinder surface, the fluid velocity is

u0 = (u, v) = (u0, 0) , (30)

and far from the cylinder it is zero. Applying the velocity transformation u ≡ u0 + u0

creates a moving reference frame in which the cylinder is motionless and the fluid velocity

far from the cylinder is −u0. Applying the same velocity transformation to the Navier-Stokes

equation yields

ρ

µ
∂u0

∂t
+ u0 ·∇u0

¶
= −∇ (p+ p0) + μ∇2u0, (31)

where the time-dependent pressure is

p0 = ρ
∂u0
∂t
x0 = −ρω2x0 cos (ωt)x0. (32)
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Integrating p0 over the surface of the cylinder relates the force per unit length F in the

inertial reference frame to the force per unit length F 0 calculated in the non-inertial frame.

F (t) = F 0 (t)− πR2ρω2x0 cos (ωt) (33)

Note that the force correction is proportional to πR2ρ. More generally, one can show that the

force correction for an oscillating body of arbitrary shape and fixed orientation is proportional

to the fluid mass displaced by the body.
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8 Appendix B: Inferred force on the oscillator’s tip

This appendix describes how we inferred the force on the fastest moving wire, located at the

oscillator’s tip, from the response of the entire oscillator. The oscillator response at large

angular amplitude θ0 can be written in a form similar to that used at small amplitudes. The

following is Eq.(15) in Reference [13] but generalized to large θ0.

G (f, θ0) =
1

k

"
1−

µ
f

f0

¶2
+ i

µ
ρ

ρs

¶µ
f

f0

¶2
Bosc

µ
R

δ
, θ0

¶#−1
(34)

(For clarity, Eq.(34) does not show the frequency-dependent corrections for anelasticity and

the experimental electronics.) Here k and f0 are the oscillator’s torsion spring constant and

vacuum resonance frequency, respectively. The oscillator’s effective density is ρs = ρl/ (πR
2),

where ρl is the wire’s measured linear density. The definition of ρs assumes that the wire’s

cross section is circular, unlike the actual wire. (See Figure 5.) Choosing R = 13.4 μm made

the values of Bosc measured at small amplitude similar to those calculated for a circular

cylinder of the same radius. However, the size and shape of the assumed cross section is

unimportant because it shifts only the magnitude of Bosc. The shift does not affect the value

of C because it is independent of oscillation amplitude.

Inverting Eq.(34) yields Bosc (R/δ, θ0), the dimensionless force-to-displacement ratio of

the entire oscillator. Nonlinear hydrodynamics complicates the relation between θ0 and

Bosc because the experimental torque was a geometrically weighted sum of the local forces

on individual oscillator wires. For large θ0 the local force on an individual wire was an
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unknown function of x0, because the dependence of the amplitude function C on x0/δ was

unknown.

Because the oscillator screen comprised some 200 squares, the screen was modeled as a

continuous distribution of wires. Also, θ0 was sufficiently small (< 0.05 rad) that the local

displacement x0 was proportional to θ0. We thus approximated Bosc (R/δ, θ0) by the integral

Bosc

µ
R

δ
, θ0

¶
' 3

rtip

Z rtip

0

B

µ
R

δ

¶
C

µ
θ0r

δ
,
R

δ

¶µ
r

rtip

¶2
dr. (35)

Here, r measures distance from the torsion axis at r = 0, and the oscillator’s tip is located

at r = rtip. The product BC is the reduced force on a single screen wire that is located

at r and oscillates with a linear displacement amplitude x0 = θ0r. In the limit of small

amplitude, C = 1, and Eq.(35) yields Bosc (R/δ, 0) = B (R/δ), the function used in Eq.(6).

To obtain the function that describes the oscillator’s tip we first take the derivative of

Eq.(35) with respect to θ0.

d

dθ
Bosc

µ
R

δ
, θ0

¶
=

3

rtip

Z rtip

0

B

µ
R

δ

¶∙
d

dθ0
C

µ
θ0r

δ
,
R

δ

¶¸µ
r

rtip

¶2
dr (36a)

=
3

rtip

Z rtip

0

B

µ
R

δ

¶∙
r

θ0

d

dr
C

µ
θ0r

δ
,
R

δ

¶¸µ
r

rtip

¶2
dr (36b)

Rearranging and integrating by parts yields

B

µ
R

δ

¶
C

µ
x0
δ
,
R

δ

¶
= Bosc

µ
R

δ
, θ0

¶
+

θ0
3

∙
d

dθ0
Bosc

µ
R

δ
, θ0

¶¸
. (37)
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Eq.(37) gives the hydrodynamics of the oscillator’s tip in terms of the oscillator’s force/displacement

ratio and its derivative with respect θ0.
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9 Appendix C: Selected notation

Table 6. Notation used in several places.

A,A∗ Figures 1 and 2, two-dimensional flow regimes [10]
a1, b1 Eq.(15), Fourier components of numerically calculated force
B (R/δ) Eq.(6), dimensionless force on arbitrary cylinder at small x0
Bcyl (R/δ) Eq.(7), dimensionless force on circular cylinder at small x0
Bosc

¡
R
δ
, θ0
¢

Eq.(34), dimensionless force on entire oscillator at amplitude θ0
C (x0/δ, R/δ) Eq.(8), amplitude function
C0 (x0/δ) Eq.(19), function that governs dependence of |C| on x0/δ
Cφ (x0/δ) Eq.(21), function that governs dependence of φ on x0/δ
F Eq.(6), force per unit length on the cylinder or wire

F̂small Eq.(6), force per unit length in the limit of small x0
G (f, θ0) Eqs.(26) and (34), experimental oscillator’s response
h,w Figure 7, height and half-width of computational domain
KC Eq.(1), Keulegan-Carpenter number
L characteristic length for oscillating flow
rtip Eq.(25), distance between the tip and the torsion axis of the oscillator
R radius of the cylinder or characteristic radius of the wire
u0 velocity amplitude of the cylinder
u, v fluid velocity components in the x and y directions
Vin, Vout experimental input and output voltages
x0 displacement amplitude of the cylinder
xtip (t) displacement of the wire at the oscillator tip
x, y coordinates in stationary reference frame

β Eq.(2), Stokes viscous parameter
δ Eq.(3), viscous penetration length
η viscosity
θ0 angular displacement amplitude of the experimental oscillator
ρ density
φ Eq.(17), phase of C (x0/δ, R/δ)

Table 7. Modifications of some variables.

modification example
dimensionless velocity u∗

moving reference frame velocity u0

Fourier transform force F̂
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Figure 1.—Values of Keulegan-Carpenter number KC and viscous parameter
   β used in the calculations and measurements. The values for several familiar
   oscillators are also shown. The curve x0/δ = 7 is an extrapolation to small β
   of the two-dimensional flow regimes found by Tatsuno and Bearman’s flow
   visualization study [10].
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Figure 2.—Data from Figure 3 of Tatsuno and Bearman’s flow visualization
   study [10]. The curve x0/δ = 7 approximately bounds the two-dimensional
   flow regimes called A and A*.
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Figure 3.—Magnitude and phase of the hydrodynamic function B (R/δ) for the present oscillator measured
   at small amplitudes [12]. The analytical calculation is Stokes’ function Bcyl (R/δ). Choosing R = 13.4 μm
   for the oscillator’s effective radius brought the measured values near the calculated values. The similarity
   between the measured and calculated values shows that the oscillator’s hydrodynamics resembled that of
   an assembly of isolated circular cylinders. (upper) Magnitude scaled to reveal departures from the dominant
   (R/δ)3/2 behavior. The offset of the measured values is unimportant because it corresponds to an error of
   only 6% in the linear mass density of a single wire. (The nominal density was estimated by weighing a piece
   of screen different from that used to make the oscillator.)

M
ag

ni
tu

de
 o

f C
 (

x 0
/δ

, R
/δ

)

3

2

1
3020

R/δ
100

0.5 Hz
1
3
5
8

12

P
ha

se
 o

f C
 (

x 0
/δ

, R
/δ

) 
ra

di
us

0.0

–0.1

–0.2

–0.3

–0.4
3020100

R/δ
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   R/δ varies by a factor of √24.
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Figure 5.—Schematic diagram of the oscillator (not to scale).
   The oscillator’s torsional displacement θ0 caused the local
   displacement amplitude x0 = rθ0, where r is the distance from
   the torsion axis. The inset shows the cross section of a typical
   oscillator wire superposed over the circular radius R = 13.4 μm
   used by the calculation.
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Figure 6.—Numerical calculations at 1 Hz using three alternate cross sections showed that the shape of the cross
   section had only a small effect on the magnitude and phase of the amplitude function C (x0/δ, R/δ). The three
   shapes (shown in the inset) were a rectangle (8×30 μm), a rectangle with half inch ends (30 μm width, 4 μm radii),
   and a rectangle with quarter-circle ends (30 μm width, 8 μm radii). The results are normalized by those for the
   circle (13.4 μm radius) that was used in the main numerical calculations. The third shape resembled that of the
   experimental oscillator, and its results were used as a small correction of the experimental data.
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Figure 7.—(a) Schematic illustration of the simplified flow problem of a circular cylinder oscillating in an incom-
   pressible incompressible fluid. In the laboratory (inertial) reference frame xOy the velocity of the cylinder is
   –x0ωsin(ωt) in the x-direction. In the moving (non-inertial) reference frame x′O′y′ attached to the center of the
   oscillating cylinder the cylinder is motionless. (b) The domain and boundary conditions used in the two-dimensional
   numerical simulations. Use of the reference frame x′O′y′ made the cylinder stationary while the surrounding fluid
   oscillated sinusoidally in the x-direction. The lengths w and h defined the size of the computational domain. The
   domain included only y ≥ 0 due to the assummed symmetry with respect to the x-axis.
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Figure 8.—Finite element mesh used in the validation test with 576 quadrilateral elements and
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   y < 2000R; (b) Enlarged view of the mesh grading near the cylinder in a local area bounded
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–0.12

Figure 9.—Selected contours of the shear component of the rate-of-deformation tensor Dxy indicated the concen-
   trations of viscous stress near the cylinder at 5 Hz. (Unit’s are s–1.) Each map was calculated during the last
   cycle when cylinder was moving from right to left at maximum speed. Asymmetry is clearly visible at x0 = 800 μm
   (x0/δ = 14.7). 
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Figure 10.—The derivation of ∂C/∂R was estimated from the difference C [x0/δ, (13.4 μm)/δ]–C [x0/δ, (6.7 μm)/δ].
   (left) The normalized derivative of magnitude |C| with respect to R/δ was approximately described by a
   simple linear function of |C|. (right) The derivative of phase φ with respect to R/δ was approximately described
   by φ. (The curves are merely guides to the eye).
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Figure 11.—Numerically calculated magnitude and phase of the amplitude function C (x0/δ, 0) as a function of
   reduced amplitude. Eq. (22) was used to adjust the data to R/δ = 0 which is equivalent to an extrapolation to
   0 Hz at constant x0/δ. The curves are empirical description given by Eq. (23).
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Figure 12.—A single oscillator wire and its maximum displacement x0
   relative to the viscous penetration length δ. The values are for 3 Hz,
   which gave the largest value of x0/δ.
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Figure 13.—Measured magnitude and phase of the amplitude function C (x0/δ, 0) as a function of reduced
   amplitude. The curves describe the calculated values derived from the data shown in figure 11.
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