780 research outputs found

    Early development of wetland plant and invertebrate communities: effects and implications of restoration

    Get PDF
    Loss of wetland habitats across the nation is staggering and continues, especially in urbanizing areas. Thus, wetland restoration has become a priority. However, questions remain regarding system function and biotic communities. We studied a constructed floodplain wetland complex near Dallas, Texas. We sought to improve understanding of wetland ecosystem development under the influence of different approaches to wetland restoration in an urbanizing landscape. In the wetland complex, 10 constructed sloughs, approximately 70m by 15m, were designated for this study. Our experiment monitored the establishment of aquatic plant and invertebrate communities under different experimental conditions. In 5 sloughs, 5 native perennial hydrophyte species were transplanted in blocks in each slough, with the remaining 5 sloughs unplanted. Portions of each slough were caged to determine the effects of protective caging. Using 1m2 caged and neighboring uncaged areas as quadrats, we sampled vegetation and the invertebrate community over two years to determine the effects of restoration treatmentsSlough planting did not result in statistically different levels of plant cover. However, invertebrate abundance was greater in planted sloughs, and plant composition was different, comprised more of perennial species in planted sloughs than in unplanted sloughs. Caging did not have an effect on plant or invertebrate communities. However, changes due to time resulted in significant increases in plant cover and invertebrate abundance and shifts in community composition. Four of 5 transplanted species were emergent growth forms. Emergent cover and the remaining species, Potamogeton nodosus, a floating-leafed plant, accounted for invertebrate community variation. Transplanted emergent species did not fare well, though other emergent species did colonize the site, along with widespread coverage by submerged Najas guadalupensis. Potamogeton spread rapidly, colonizing unplanted sloughs, and this will likely affect community development across the site. Plant and invertebrate richness values were low, likely due to hydrological extremes and the short period of time since construction. Water level fluctuations resulted in plant communities dominated by obligate wetland plants, though drought stress took a toll on survival of plants and invertebrates in late summer. Community development and system function were dependent mostly upon time and hydrology. on the communities

    Dual positive and negative regulation of GPCR signaling by GTP hydrolysis

    Get PDF
    G protein-coupled receptors (GPCRs) regulate a variety of intracellular pathways through their ability to promote the binding of GTP to heterotrimeric G proteins. Regulator of G protein signaling (RGS) proteins increase the intrinsic GTPase activity of G-subunits and are widely regarded as negative regulators of G protein signaling. Using yeast we demonstrate that GTP hydrolysis is not only required for desensitization, but is essential for achieving a high maximal (saturated level) response. Thus RGS-mediated GTP hydrolysis acts as both a negative (low stimulation) and positive (high stimulation) regulator of signaling. To account for this we generated a new kinetic model of the G protein cycle where GGTP enters an inactive GTP-bound state following effector activation. Furthermore, in vivo and in silico experimentation demonstrates that maximum signaling output first increases and then decreases with RGS concentration. This unimodal, non-monotone dependence on RGS concentration is novel. Analysis of the kinetic model has revealed a dynamic network motif that shows precisely how inclusion of the inactive GTP-bound state for the G produces this unimodal relationship

    Effect of mattress deflection on CPR quality assessment for older children and adolescents

    Get PDF
    Appropriate chest compression (CC) depth is associated with improved CPR outcome. CCs provided in hospital are often conducted on a compliant mattress. The objective was to quantify the effect of mattress compression on the assessment of CPR quality in children. Methods: A force and deflection sensor (FDS) was used during CPR in the Pediatric Intensive Care Unit and Emergency Department of a children's hospital. The sensor was interposed between the chest of the patient and hands of the rescuer and measured CC depth. Following CPR event, each event was reconstructed with a manikin and an identical mattress/backboard/patient configuration. CCs were performed using FDS on the sternum and a reference accelerometer attached to the spine of the manikin, providing a means to Calculate the mattress deflection. Results: Twelve CPR events with 14,487 CC (11 patients, median age 14.9 years) were recorded and reconstructed: 9 on ICU beds (9296 CC), 3 on stretchers (5191 CC). Measured mean CC depth during CPR was 47 +/- 8 mm on ICU beds, and 45 +/- 7 mm on stretcher beds with overestimation of 13 +/- 4 mm and 4 +/- 1 mm, respectively, due to mattress compression. After adjusting for this, the proportion of CC that met the CPR guidelines decreased from 88.4 to 31.8% on ICU beds (p < 0.001), and 86.3 to 64.7% on stretcher (p < 0.001 The proportion of appropriate depth CC was significantly smaller on ICU beds (p < 0.001). Conclusion: CC conducted on a non-rigid surface may not be deep enough. FDS may overestimate CC depth by 28% on ICU beds, and 10% on stretcher beds

    Tree Species Traits Influence Soil Physical, Chemical, and Biological Properties in High Elevation Forests

    Get PDF
    BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not. CONCLUSIONS/SIGNIFICANCE: Although some soil characteristics were unaffected by tree species identity, our results clearly demonstrate that these dominant tree species are associated with soils that differ in several physical, chemical, and biotic properties. Ongoing environmental changes in this region, e.g. changes in fire regime, frequency of insect outbreaks, changes in precipitation patterns and snowpack, and land-use change, may alter the relative abundance of these tree species over coming decades, which in turn will likely alter the soils

    A novel mistranslating tRNA model in Drosophila melanogaster has diverse, sexually dimorphic effects

    Get PDF
    Transfer RNAs (tRNAs) are the adaptor molecules required for reading the genetic code and producing proteins. Transfer RNA variants can lead to genome-wide mistranslation, the misincorporation of amino acids not specified by the standard genetic code into nascent proteins. While genome sequencing has identified putative mistranslating transfer RNA variants in human populations, little is known regarding how mistranslation affects multicellular organisms. Here, we create a multicellular model of mistranslation by integrating a serine transfer RNA variant that mistranslates serine for proline (tRNAUGG,G26ASer) into the Drosophila melanogaster genome. We confirm mistranslation via mass spectrometry and find that tRNAUGG,G26ASer misincorporates serine for proline at a frequency of ∼0.6% per codon. tRNAUGG,G26ASer extends development time and decreases the number of flies that reach adulthood. While both sexes of adult flies containing tRNAUGG,G26ASer present with morphological deformities and poor climbing performance, these effects are more pronounced in female flies and the impact on climbing performance is exacerbated by age. This model will enable studies into the synergistic effects of mistranslating transfer RNA variants and disease-causing alleles

    Oligodendrocyte dynamics dictate cognitive performance outcomes of working memory training in mice

    Get PDF
    Previous work has shown that motor skill learning stimulates and requires generation of myelinating oligodendrocytes (OLs) from their precursor cells (OLPs) in the brains of adult mice. In the present study we ask whether OL production is also required for non-motor learning and cognition, using T-maze and radial-arm-maze tasks that tax spatial working memory. We find that maze training stimulates OLP proliferation and OL production in the medial prefrontal cortex (mPFC), anterior corpus callosum (genu), dorsal thalamus and hippocampal formation of adult male mice; myelin sheath formation is also stimulated in the genu. Genetic blockade of OL differentiation and neo-myelination in Myrf conditional-knockout mice strongly impairs training-induced improvements in maze performance. We find a strong positive correlation between the performance of individual wild type mice and the scale of OLP proliferation and OL generation during training, but not with the number or intensity of c-Fos+ neurons in their mPFC, underscoring the important role played by OL lineage cells in cognitive processing

    Examination of embolisms in maple and birchsaplings utilising microCT

    Get PDF
    We demonstrate the application of synchrotron x-ray microtomography (microCT) to non-invasively examine the internal structure of a maple and birch sapling. We show that, through the use of standard image analysis techniques, embolised vessels can be extracted from reconstructed slices of the stem. By combining these thresholded images with connectivity analysis, we map out the embolisms within the sapling in three dimensions and evaluate the size distribution, showing that large embolisms over 0.005 mm3 in volume compose the majority of the saplings’ total embolised volume. Finally we evaluate the radial distribution of embolisms, showing that in maple fewer embolisms are present towards the cambium, while birch has a more uniform distribution

    A Minimal Model of Metabolism Based Chemotaxis

    Get PDF
    Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis

    Spectroscopy of Blue Stragglers and Turnoff Stars in M67 (NGC 2682)

    Full text link
    We have analyzed high-resolution spectra of relatively cool blue stragglers and main sequence turnoff stars in the old open cluster M67 (NGC 2682). We attempt to identify blue stragglers whose spectra are least contaminated by binary effects (contamination by a binary companion or absorption by circumstellar material). These ``best'' stragglers have metallicities ([Fe/H] = -0.05) and abundance ratios of the blue stragglers are not significantly different from those of the turnoff stars. Based on arguments from hydrodynamical models of stellar collisions, we assert that the current upper limits for the lithium abundances of all blue stragglers observed in M67 (by us and others) are consistent with no mixing during the formation process, assuming pre-main sequence and main sequence depletion patterns observed for M67 main sequence stars. We discuss composition signatures that could more definitively distinguish between blue straggler formation mechanisms in open cluster stars. We confirm the spectroscopic detection of a binary companion to the straggler S 1082. From our spectra, we measure a projected rotational speed of 90+/-20 km/sec for the secondary, and find that its radial velocity varies with a peak-to-peak amplitude of ~ 25 km/sec. Because the radial velocities do not vary with a period corresponding to the partial eclipses in the system, we believe this system is currently undergoing mass transfer. In addition we present evidence that S 984 is a true blue straggler (and not an unresolved pair). If this can be proven, our detection of lithium may indicate a collisional origin.Comment: 20 pages, 4 figures, to appear in October 2000 A

    Contrasting watershed-scale trends in runoff and sediment yield complicate rangeland water resources planning

    Get PDF
    Rangelands cover a large portion of the earth's land surface and are undergoing dramatic landscape changes. At the same time, these ecosystems face increasing expectations to meet growing water supply needs. To address major gaps in our understanding of rangeland hydrologic function, we investigated historical watershed-scale runoff and sediment yield in a dynamic landscape in central Texas, USA. We quantified the relationship between precipitation and runoff and analyzed reservoir sediment cores dated using cesium-137 and lead-210 radioisotopes. Local rainfall and streamflow showed no directional trend over a period of 85 years, resulting in a rainfall–runoff ratio that has been resilient to watershed changes. Reservoir sedimentation rates generally were higher before 1963, but have been much lower and very stable since that time. Our findings suggest that (1) rangeland water yields may be stable over long periods despite dramatic landscape changes while (2) these same landscape changes influence sediment yields that impact downstream reservoir storage. Relying on rangelands to meet water needs demands an understanding of how these dynamic landscapes function and a quantification of the physical processes at work
    corecore