We have analyzed high-resolution spectra of relatively cool blue stragglers
and main sequence turnoff stars in the old open cluster M67 (NGC 2682). We
attempt to identify blue stragglers whose spectra are least contaminated by
binary effects (contamination by a binary companion or absorption by
circumstellar material). These ``best'' stragglers have metallicities ([Fe/H] =
-0.05) and abundance ratios of the blue stragglers are not significantly
different from those of the turnoff stars. Based on arguments from
hydrodynamical models of stellar collisions, we assert that the current upper
limits for the lithium abundances of all blue stragglers observed in M67 (by us
and others) are consistent with no mixing during the formation process,
assuming pre-main sequence and main sequence depletion patterns observed for
M67 main sequence stars. We discuss composition signatures that could more
definitively distinguish between blue straggler formation mechanisms in open
cluster stars.
We confirm the spectroscopic detection of a binary companion to the straggler
S 1082. From our spectra, we measure a projected rotational speed of 90+/-20
km/sec for the secondary, and find that its radial velocity varies with a
peak-to-peak amplitude of ~ 25 km/sec. Because the radial velocities do not
vary with a period corresponding to the partial eclipses in the system, we
believe this system is currently undergoing mass transfer. In addition we
present evidence that S 984 is a true blue straggler (and not an unresolved
pair). If this can be proven, our detection of lithium may indicate a
collisional origin.Comment: 20 pages, 4 figures, to appear in October 2000 A