338 research outputs found

    Individual Neurons Confined to Distinct Antennal-Lobe Tracts in the Heliothine Moth: Morphological Characteristics and Global Projection Patterns

    Get PDF
    To explore fundamental principles characterizing chemosensory information processing, we have identified antennal-lobe projection neurons in the heliothine moth, including several neuron types not previously described. Generally, odor information is conveyed from the primary olfactory center of the moth brain, the antennal lobe, to higher brain centers via projection neuron axons passing along several parallel pathways, of which the medial, mediolateral, and lateral antennal-lobe tract are considered the classical ones. Recent data have revealed the projections of the individual tracts more in detail demonstrating three main target regions in the protocerebrum; the calyces are innervated mainly by the medial tract, the superior intermediate protocerebrum by the lateral tract exclusively, and the lateral horn by all tracts. In the present study, we have identified, via iontophoretic intracellular staining combined with confocal microscopy, individual projection neurons confined to the tracts mentioned above, plus two additional ones. Further, using the visualization software AMIRA, we reconstructed the stained neurons and registered the models into a standard brain atlas, which allowed us to compare the termination areas of individual projection neurons both across and within distinct tracts. The data demonstrate a morphological diversity of the projection neurons within distinct tracts. Comparison of the output areas of the neurons confined to the three main tracts in the lateral horn showed overlapping terminal regions for the medial and mediolateral tracts; the lateral tract neurons, on the contrary, targeted mostly other output areas in the protocerebrum

    Kin but less than kind:within-group male relatedness does not increase female fitness in seed beetles

    Get PDF
    Theory maintains within-group male relatedness can mediate sexual conflict by reducing male-male competition and collateral harm to females. We tested whether male relatedness can lessen female harm in the seed beetle Callosobruchus maculatus. Male relatedness did not influence female lifetime reproductive success or individual fitness across two different ecologically relevant scenarios of mating competition. However, male relatedness marginally improved female survival. Because male relatedness improved female survival in late life when C. maculatus females are no longer producing offspring, our results do not provide support for the role of within-group male relatedness in mediating sexual conflict. The fact that male relatedness improves the post-reproductive part of the female life cycle strongly suggests that the effect is non-adaptive. We discuss adaptive and non-adaptive mechanisms that could result in reduced female harm in this and previous studies, and suggest that cognitive error is a likely explanation

    Evolution of differential maternal age effects on male and female offspring development and longevity

    Get PDF
    Summary 1. Maternal age effects on life-history traits, including longevity, are widespread and can be seen as a manifestation of ageing. However, little is known about how maternal life span may influence the maternal age effect. At a given chronological age, a long-lived parent may be at a younger biological age than a short-lived parent and thus has a less severe parental age effect. However, earlier work using experimentally evolved short-and long-lived lines did not support this hypothesis. 2. We scored developmental time and longevity of 14 995 individual seed beetles, Callosobruchus maculatus derived from replicate short-lived and long-lived lines created via artificial selection on male life span. 3. Offspring from older mothers had shorter life span, which is consistent with most of the literature. 4. We found support for the hypothesis that detrimental maternal age effects evolve to be weaker under selection for long life span. However, this finding was only apparent in males, suggesting that maternal age affects male and female offspring differently. 5. These results suggest that sex-dependent parental age effects should be incorporated in the studies of longevity and ageing evolution and that selection on one sex can cause evolution of parental age effects in the other sex

    Evolution of differential maternal age effects on male and female offspring development and longevity

    Get PDF
    Summary 1. Maternal age effects on life-history traits, including longevity, are widespread and can be seen as a manifestation of ageing. However, little is known about how maternal life span may influence the maternal age effect. At a given chronological age, a long-lived parent may be at a younger biological age than a short-lived parent and thus has a less severe parental age effect. However, earlier work using experimentally evolved short-and long-lived lines did not support this hypothesis. 2. We scored developmental time and longevity of 14 995 individual seed beetles, Callosobruchus maculatus derived from replicate short-lived and long-lived lines created via artificial selection on male life span. 3. Offspring from older mothers had shorter life span, which is consistent with most of the literature. 4. We found support for the hypothesis that detrimental maternal age effects evolve to be weaker under selection for long life span. However, this finding was only apparent in males, suggesting that maternal age affects male and female offspring differently. 5. These results suggest that sex-dependent parental age effects should be incorporated in the studies of longevity and ageing evolution and that selection on one sex can cause evolution of parental age effects in the other sex

    Genetic background and thermal regime influence adaptation to novel environment in the seed beetle, Callosobruchus maculatus.

    Get PDF
    Climate change is associated with the increase in both the mean and variability of thermal conditions. Therefore, the use of more realistic fluctuating thermal regimes is the most appropriate laboratory method for predicting population responses to thermal heterogeneity. However, the long- and short-term implications of evolving under such conditions are not well understood. Here, we examined differences in key life-history traits among populations of seed beetles (Callosobruchus maculatus) that evolved under either constant control conditions or in an environment with fluctuating daily temperatures. Specifically, individuals from two distinct genetic backgrounds were kept for 19 generations at one of two temperatures, a constant temperature (T = 29 °C) or a fluctuating daily cycle (Tmean = 33 °C, Tmax = 40 °C, and Tmin = 26 °C), and were assayed either in their evolved environment or in the other environment. We found that beetles that evolved in fluctuating environments but were then switched to constant 29 °C conditions had far greater lifetime reproductive success compared with beetles that were kept in their evolved environments. This increase in reproductive success suggests that beetles raised in fluctuating environments may have evolved greater thermal breadth than control condition beetles. In addition, the degree of sexual dimorphism in body size and development varied as a function of genetic background, evolved thermal environment, and current temperature conditions. These results not only highlight the value of incorporating diel fluctuations into climate research but also suggest that populations that experience variability in temperature may be better able to respond to both short- and long-term changes in environmental conditions

    Inbreeding reduces fitness of seed beetles under thermal stress

    Get PDF
    Human-induced environmental change can influence populations both at the global level through climatic warming and at the local level through habitat fragmentation. As populations become more isolated, they can suffer from high levels of inbreeding, which contributes to a reduction in fitness, termed inbreeding depression. However, it is still unclear if this increase in homozygosity also results in a corresponding increase in sensitivity to stressful conditions, which could intensify the already detrimental effects of environmental warming. Here, in a fully factorial design, we assessed the life-long impact of increased inbreeding load and elevated temperature on key life history traits in the seed beetle, Callosobruchus maculatus. We found that beetles raised at higher temperatures had far reduced fitness and survival than beetles from control temperatures. Importantly, these negative effects were exacerbated in inbred beetles as a result of increased inbreeding load, with further detrimental effects manifesting on individual eclosion probability and lifetime reproductive success. These results reveal the harmful impact that increasing temperature and likelihood of habitat fragmentation due to anthropogenetic changes in environmental conditions could have on populations of organisms worldwide.<br/&gt

    Bose-Einstein Condensates in Optical Lattices: Band-Gap Structure and Solitons

    Full text link
    We analyze the existence and stability of spatially extended (Bloch-type) and localized states of a Bose-Einstein condensate loaded into an optical lattice. In the framework of the Gross-Pitaevskii equation with a periodic potential, we study the band-gap structure of the matter-wave spectrum in both the linear and nonlinear regimes. We demonstrate the existence of families of spatially localized matter-wave gap solitons, and analyze their stability in different band gaps, for both repulsive and attractive atomic interactions

    Clinical significance of genetic aberrations in secondary acute myeloid leukemia

    Get PDF
    The study aimed to identify genetic lesions associated with secondary acute myeloid leukemia (sAML) in comparison with AML arising de novo (dnAML) and assess their impact on patients' overall survival (OS). High-resolution genotyping and loss of heterozygosity mapping was performed on DNA samples from 86 sAML and 117 dnAML patients, using Affymetrix Genome-Wide Human SNP 6.0 arrays. Genes TP53, RUNX1, CBL, IDH1/2, NRAS, NPM1, and FLT3 were analyzed for mutations in all patients. We identified 36 recurrent cytogenetic aberrations (more than five events). Mutations in TP53, 9pUPD, and del7q (targeting CUX1 locus) were significantly associated with sAML, while NPM1 and FLT3 mutations associated with dnAML. Patients with sAML carrying TP53 mutations demonstrated lower 1-year OS rate than those with wild-type TP53 (14.3% +/- 9.4% vs. 35.4% +/- 7.2%; P = 0.002), while complex karyotype, del7q (CUX1) and del7p (IKZF1) showed no significant effect on OS. Multivariate analysis confirmed that mutant TP53 was the only independent adverse prognostic factor for OS in sAML (hazard ratio 2.67; 95% CI: 1.335.37; P = 0.006). Patients with dnAML and complex karyotype carried sAML-associated defects (TP53 defects in 54.5%, deletions targeting FOXP1 and ETV6 loci in 45.4% of the cases). We identified several co-occurring lesions associated with either sAML or dnAML diagnosis. Our data suggest that distinct genetic lesions drive leukemogenesis in sAML. High karyotype complexity of sAML patients does not influence OS. Somatic mutations in TP53 are the only independent adverse prognostic factor in sAML. Patients with dnAML and complex karyotype show genetic features associated with sAML and myeloproliferative neoplasms. Am. J. Hematol., 2012

    Hunger Artists: Yeast Adapted to Carbon Limitation Show Trade-Offs under Carbon Sufficiency

    Get PDF
    As organisms adaptively evolve to a new environment, selection results in the improvement of certain traits, bringing about an increase in fitness. Trade-offs may result from this process if function in other traits is reduced in alternative environments either by the adaptive mutations themselves or by the accumulation of neutral mutations elsewhere in the genome. Though the cost of adaptation has long been a fundamental premise in evolutionary biology, the existence of and molecular basis for trade-offs in alternative environments are not well-established. Here, we show that yeast evolved under aerobic glucose limitation show surprisingly few trade-offs when cultured in other carbon-limited environments, under either aerobic or anaerobic conditions. However, while adaptive clones consistently outperform their common ancestor under carbon limiting conditions, in some cases they perform less well than their ancestor in aerobic, carbon-rich environments, indicating that trade-offs can appear when resources are non-limiting. To more deeply understand how adaptation to one condition affects performance in others, we determined steady-state transcript abundance of adaptive clones grown under diverse conditions and performed whole-genome sequencing to identify mutations that distinguish them from one another and from their common ancestor. We identified mutations in genes involved in glucose sensing, signaling, and transport, which, when considered in the context of the expression data, help explain their adaptation to carbon poor environments. However, different sets of mutations in each independently evolved clone indicate that multiple mutational paths lead to the adaptive phenotype. We conclude that yeasts that evolve high fitness under one resource-limiting condition also become more fit under other resource-limiting conditions, but may pay a fitness cost when those same resources are abundant
    • …
    corecore