4 research outputs found

    Temporal trends of COVID-19 antibodies in vaccinated healthcare workers undergoing repeated serological sampling: An individual-level analysis within 13 months in the ORCHESTRA cohort

    Get PDF
    Short summaryWe investigated changes in serologic measurements after COVID-19 vaccination in 19,422 subjects. An individual-level analysis was performed on standardized measurements. Age, infection, vaccine doses, time between doses and serologies, and vaccine type were associated with changes in serologic levels within 13 months.BackgroundPersistence of vaccine immunization is key for COVID-19 prevention.MethodsWe investigated the difference between two serologic measurements of anti-COVID-19 S1 antibodies in an individual-level analysis on 19,422 vaccinated healthcare workers (HCW) from Italy, Spain, Romania, and Slovakia, tested within 13 months from first dose. Differences in serologic levels were divided by the standard error of the cohort-specific distribution, obtaining standardized measurements. We fitted multivariate linear regression models to identify predictors of difference between two measurements.ResultsWe observed a progressively decreasing difference in serologic levels from <30 days to 210–240 days. Age was associated with an increased difference in serologic levels. There was a greater difference between the two serologic measurements in infected HCW than in HCW who had never been infected; before the first measurement, infected HCW had a relative risk (RR) of 0.81 for one standard deviation in the difference [95% confidence interval (CI) 0.78–0.85]. The RRs for a 30-day increase in time between first dose and first serology, and between the two serologies, were 1.08 (95% CI 1.07–1.10) and 1.04 (95% CI 1.03–1.05), respectively. The first measurement was a strong predictor of subsequent antibody decrease (RR 1.60; 95% CI 1.56–1.64). Compared with Comirnaty, Spikevax (RR 0.83, 95% CI 0.75–0.92) and mixed vaccines (RR 0.61, 95% CI 0.51–0.74) were smaller decrease in serological level (RR 0.46; 95% CI 0.40–0.54).ConclusionsAge, COVID-19 infection, number of doses, time between first dose and first serology, time between serologies, and type of vaccine were associated with differences between the two serologic measurements within a 13-month period

    Determinants of Anti-S Immune Response at 9 Months after COVID-19 Vaccination in a Multicentric European Cohort of Healthcare Workers-ORCHESTRA Project

    No full text
    Background: The persistence of antibody levels after COVID-19 vaccination has public health relevance. We analyzed the determinants of quantitative serology at 9 months after vaccination in a multicenter cohort. Methods: We analyzed data on anti-SARS-CoV-2 spike antibody levels at 9 months from the first dose of vaccinated HCW from eight centers in Italy, Germany, Spain, Romania and Slovakia. Serological levels were log-transformed to account for the skewness of the distribution and normalized by dividing them by center-specific standard errors. We fitted center-specific multivariate regression models to estimate the cohort-specific relative risks (RR) of an increase of one standard deviation of log antibody level and the corresponding 95% confidence interval (CI), and combined them in random-effects meta-analyses. Finally, we conducted a trend analysis of 1 to 7 months' serology within one cohort. Results: We included 20,216 HCW with up to two vaccine doses and showed that high antibody levels were associated with female sex (p = 0.01), age (RR = 0.87, 95% CI = 0.86-0.88 per 10-year increase), 10-day increase in time since last vaccine (RR = 0.97, 95% CI 0.97-0.98), previous infection (3.03, 95% CI = 2.92-3.13), two vaccine doses (RR = 1.22, 95% CI = 1.09-1.36), use of Spikevax (OR = 1.51, 95% CI = 1.39-1.64), Vaxzevria (OR = 0.57, 95% CI = 0.44-0.73) or heterologous vaccination (OR = 1.33, 95% CI = 1.12-1.57), compared to Comirnaty. The trend in the Bologna cohort, based on 3979 measurements, showed a decrease in mean standardized antibody level from 8.17 to 7.06 (1-7 months, p for trend 0.005). Conclusions: Our findings corroborate current knowledge on the determinants of COVID-19 vaccine-induced immunity and declining trend with time
    corecore