53 research outputs found
Implementation of a surgical unit-based safety programme in African hospitals: a multicentre qualitative study.
Background: A Surgical Unit-based Safety Programme (SUSP) has been shown to improve perioperative prevention practices and to reduce surgical site infections (SSI). It is critical to understand the factors influencing the successful implementation of the SUSP approach in low- and middle-income settings. We undertook a qualitative study to assess viability, and understand facilitators and barriers to implementing the SUSP approach in 5 African hospitals. Methods: Qualitative study based on interviews with individuals from all hospitals participating in a WHO-coordinated before-after SUSP study. The SUSP intervention consisted of a multimodal strategy including multiple SSI prevention measures combined with an adaptive approach aimed at improving teamwork and safety culture. Results: Thirteen interviews (5 head surgeons, 3 surgeons, 5 nurses) were conducted with staff from five hospital sites. Identified facilitators included influential individuals (intrinsic motivation of local SUSP teams, boundary spanners, multidisciplinary engagement, active leadership support), peer-to-peer learning (hospital networking and positive deviance, benchmarking), implementation fitness (enabling infrastructures, momentum from previous projects), and timely feedback of infection rates and process indicators. Barriers (organisational 'constipators', workload, mistrust, turnover) and local solutions to these were also identified. Conclusions: Participating hospitals benefitted from the SUSP programme structures (e.g. surveillance, hospital networks, formation of multidisciplinary teams) and adaptive tools (e.g. learning from defects, executive rounds guide) to change perceptions around patient safety and improve behaviours to prevent SSI. The combination of technical and adaptive elements represents a promising approach to facilitate the introduction of evidence-based best practices and to improve safety culture through local team engagement in resource-limited settings
Characteristics of intensive care units in Michigan: Not an open and closed case
OBJECTIVE: Delivery of critical care by intensivists has been recommended by several groups. Our objective was to understand the delivery of critical care physician services in Michigan and the role of intensivists and nonintensivist providers in providing care. DESIGN: Descriptive questionnaire. PARTICIPANTS AND SETTING: Intensive care unit (ICU) directors and nurse managers at 96 sites, representing 115 ICUs from 72 hospitals in Michigan. MEASUREMENTS AND RESULTS: The primary outcome measure was the percentage of sites utilizing a closed vs. an open model of ICU care. Secondary outcome measures included the percentage of ICUs utilizing a high-intensity service model, hospital size, ICU size, type of clinician providing care, and clinical activities performed. Twenty-four (25%) sites used a closed model of intensive care, while 72 (75%) had an open model of care. Hospitals with closed ICUs were larger and had larger ICUs than sites with open ICUs ( P < 0.05). Hospitalists serving as attending physicians were strongly associated with an open ICU (odds ratio [OR] = 12.2; 95% confidence interval [CI] = 2.5-60.2), as was the absence of intensivists in the group (OR = 12.2; 95%CI = 1.4-105.8), while ICU and hospital size were not associated. At 18 sites (20%) all attendings were board certified in Critical Care. Sixty sites had less than 50% board-certified attending physicians. CONCLUSIONS: The closed intensivist-led model of intensive care delivery is not in widespread use in Michigan. In the absence of intensivists, alternate models of care, including the hospitalist model, are frequently used. Journal of Hospital Medicine 2010;5:4–9. © 2010 Society of Hospital Medicine.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64903/1/567_ftp.pd
Introduction to A Compendium of Strategies to Prevent Healthcare-Associated Infections In Acute-Care Hospitals: 2022 Updates.
Since the initial publication of A Compendium of Strategies to Prevent Healthcare-Associated Infections in Acute Care Hospitals in 2008, the prevention of healthcare-associated infections (HAIs) has continued to be a national priority. Progress in healthcare epidemiology, infection prevention, antimicrobial stewardship, and implementation science research has led to improvements in our understanding of effective strategies for HAI prevention. Despite these advances, HAIs continue to affect ∼1 of every 31 hospitalized patients, leading to substantial morbidity, mortality, and excess healthcare expenditures, and persistent gaps remain between what is recommended and what is practiced.The widespread impact of the coronavirus disease 2019 (COVID-19) pandemic on HAI outcomes in acute-care hospitals has further highlighted the essential role of infection prevention programs and the critical importance of prioritizing efforts that can be sustained even in the face of resource requirements from COVID-19 and future infectious diseases crises.The Compendium: 2022 Updates document provides acute-care hospitals with up-to-date, practical expert guidance to assist in prioritizing and implementing HAI prevention efforts. It is the product of a highly collaborative effort led by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Disease Society of America (IDSA), the Association for Professionals in Infection Control and Epidemiology (APIC), the American Hospital Association (AHA), and The Joint Commission, with major contributions from representatives of organizations and societies with content expertise, including the Centers for Disease Control and Prevention (CDC), the Pediatric Infectious Disease Society (PIDS), the Society for Critical Care Medicine (SCCM), the Society for Hospital Medicine (SHM), the Surgical Infection Society (SIS), and others
Introduction to “A Compendium of Strategies to Prevent Healthcare-Associated Infections in Acute Care Hospitals: 2014 Updates”
Abstract
Since the publication of "A Compendium of Strategies to Prevent Healthcare-Associated Infections in Acute Care Hospitals" in 2008, prevention of healthcare-associated infections (HAIs) has become a national priority. Despite improvements, preventable HAIs continue to occur. The 2014 updates to the Compendium were created to provide acute care hospitals with up-to-date, practical, expert guidance to assist in prioritizing and implementing their HAI prevention efforts. It is the product of a highly collaborative effort led by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), the American Hospital Association (AHA), the Association for Professionals in Infection Control and Epidemiology (APIC), and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise, including the Centers for Disease Control and Prevention (CDC), the Institute for Healthcare Improvement (IHI), the Pediatric Infectious Diseases Society (PIDS), the Society for Critical Care Medicine (SCCM), the Society for Hospital Medicine (SHM), and the Surgical Infection Society (SIS)
Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012
OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008.
DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development.
METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations.
RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C).
CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients
- …