46 research outputs found

    Damage tolerance of nuclear graphite at elevated temperatures

    Get PDF
    Nuclear-grade graphite is a critically important high-temperature structural material for current and potentially next generation of fission reactors worldwide. It is imperative to understand its damage-tolerant behaviour and to discern the mechanisms of damage evolution under in-service conditions. Here we perform in situ mechanical testing with synchrotron X-ray computed micro-tomography at temperatures between ambient and 1,000 °C on a nuclear-grade Gilsocarbon graphite.We find that both the strength and fracture toughness of this graphite are improved at elevated temperature. Whereas this behaviour is consistent with observations of the closure of microcracks formed parallel to the covalent-sp2-bonded graphene layers at higher temperatures, which accommodate the more than tenfold larger thermal expansion perpendicular to these layers, we attribute the elevation in strength and toughness primarily to changes in the residual stress state at 800–1,000 °C, specifically to the reduction in significant levels of residual tensile stresses in the graphite that are ‘frozen-in’ following processing

    Stem cells from human apical papilla decrease neuro-inflammation and stimulate oligodendrocyte progenitor differentiation via activin-A secretion

    Get PDF
    Secondary damage following spinal cord injury leads to non-reversible lesions and hampering of the reparative process. The local production of pro-inflammatory cytokines such as TNF-α can exacerbate these events. Oligodendrocyte death also occurs, followed by progressive demyelination leading to significant tissue degeneration. Dental stem cells from human apical papilla (SCAP) can be easily obtained at the removal of an adult immature tooth. This offers a minimally invasive approach to re-use this tissue as a source of stem cells, as compared to biopsying neural tissue from a patient with a spinal cord injury. We assessed the potential of SCAP to exert neuroprotective effects by investigating two possible modes of action: modulation of neuro-inflammation and oligodendrocyte progenitor cell (OPC) differentiation. SCAP were co-cultured with LPS-activated microglia, LPS-activated rat spinal cord organotypic sections (SCOS), and LPS-activated co-cultures of SCOS and spinal cord adult OPC. We showed for the first time that SCAP can induce a reduction of TNF-α expression and secretion in inflamed spinal cord tissues and can stimulate OPC differentiation via activin-A secretion. This work underlines the potential therapeutic benefits of SCAP for spinal cord injury repair

    Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury

    Get PDF
    We hypothesized that local delivery of GDNF in spinal cord lesion via an injectable alginate hydrogel gelifying in situ would support spinal cord plasticity and functional recovery. The GDNF release from the hydrogel was slowed by GDNF encapsulation in microspheres compared to non-formulated GDNF (free GDNF). When injected in a rat spinal cord hemisection model, more neurofilaments were observed in the lesion when the rats were treated with free GDNF-loaded hydrogels. More growing neurites were detected in the tissues surrounding the lesion when the animals were treated with GDNF microsphere-loaded hydrogels. Intense GFAP (astrocytes), low III tubulin (neural cells) and RECA-1 (endothelial cells) stainings were observed for non-treated lesions while GDNF-treated spinal cords presented less GFAP staining and more endothelial and nerve fiber infiltration in the lesion site. The animals treated with free GDNF-loaded hydrogel presented superior functional recovery compared with the animals treated with the GDNF microsphere-loaded hydrogels and non-treated animals

    Extracellular matrix-derived hydrogels for dental stem cell delivery

    Get PDF
    Decellularized mammalian extracellular matrices (ECM) have been widely accepted as an ideal substrate for repair and remodelling of numerous tissues in clinical and pre-clinical studies. Recent studies have demonstrated the ability of ECM scaffolds derived from site-specific homologous tissues to direct cell differentiation. The present study investigated the suitability of hydrogels derived from different source tissues: bone, spinal cord and dentine, as suitable carriers to deliver human apical papilla derived mesenchymal stem cells (SCAP) for spinal cord regeneration. Bone, spinal cord, and dentine ECM hydrogels exhibited distinct structural, mechanical, and biological characteristics. All three hydrogels supported SCAP viability and proliferation. However, only spinal cord and bone derived hydrogels promoted the expression of neural lineage markers. The specific environment of ECM scaffolds significantly affected the differentiation of SCAP to a neural lineage, with stronger responses observed with spinal cord ECM hydrogels, suggesting that site-specific tissues are more likely to facilitate optimal stem cell behavior for constructive spinal cord regeneration

    Spinal cord injury : how could dental stem cells from human apical papilla take up the challenge ?

    No full text
    Stem cells from the apical papilla (SCAP) derive from the neural crest and express numerous neurogenic markers. The goal of the present work was to investigate their therapeutic potential regarding the treatment of neural tissue damage, such as spinal cord injury (SCI). In the first part, we evaluated the impact of hydrogel properties on SCAP and we selected a fibrin hydrogel as the most suitable delivery system to evaluate the influence of SCAP for spinal cord regeneration. In the second part, we observed that implantation of a whole human apical papilla at the lesion site improved gait of spinally injured rats. Finally, in the third part, we demonstrated that SCAP have immunomodulatory properties and can stimulate oligodendrocyte progenitor cell differentiation. This work underlines the potential therapeutic benefits of SCAP for spinal cord repair.(BIFA - Sciences biomédicales et pharmaceutiques) -- UCL, 201

    LA SYPHILIS: ASPECTS RECENTS ET RELATIONS AVEC LE HIV

    No full text
    SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore