42 research outputs found

    Cardiac failure in β-thalassemia: diagnosis, prevention and management

    Get PDF
    Heart failure always represented and still remains the leading cause of mortality in &beta; (&beta;)-thalassemia, despite the therapeutic advances and the considerable amelioration of prognosis accomplished over the last decades. High cardiac output due to chronic anemia and myocardial iron overload due to repetitive blood transfusions are the two main pathogenetic mechanisms causing heart failure in &beta;-thalassemia. In regularly treated thalassemia major patients, left ventricular dysfunction, resulting mainly from myocardial siderosis, is considered to be the primary cause of heart failure and thus the prevention, early recognition and effective management of iron overload is of key importance. However, the spectrum of cardiovascular complications that may ultimately lead to heart is wide and should be individually investigated in each one of the patients. Echocardiography is the main modality used for the regular follow-up and screening of asymptomatic patients and for the evaluation of patients with cardiac symptoms, while the T2* relaxation time provided by magnetic resonance imaging allows the accurate identification and quantification of myocardial iron burden and thus the proper guidance of iron chelation therapy.&nbsp;近几十年来,尽管治疗方法取得进步和预断方法得到显著改进,但是心脏衰竭仍是引起&beta;地中海贫血症患者死亡的主要原因。 慢性贫血导致的高心输出量和反复输血导致的心脏铁过载,是导致&beta;地中海贫血患者心脏衰竭的两大发病机制。 在常规治疗的重型地中海贫血患者中,心脏铁质沉着病引起的可逆性左心室功能障碍,被认为是心脏衰竭的主要原因。因此,预防、早期确诊和有效控制铁过载至关重要。 然而,最终导致心脏衰竭的心血管并发症的症状繁多,应对每个患者单独进行检查。 超声心动图仪是用于无症状患者定期随访、筛查和诊断有心脏病症状患者的主要仪器,磁共振成象显示的T2*松弛时间可更准确地识别和量化心脏的铁负荷,有助于正确引导铁螯合疗法。</p

    The efficacy of iron chelator regimes in reducing cardiac and hepatic iron in patients with thalassaemia major: a clinical observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Available iron chelation regimes in thalassaemia may achieve different changes in cardiac and hepatic iron as assessed by MR. The aim of this study was to assess the efficacy of four available iron chelator regimes in 232 thalassaemia major patients by assessing the rate of change in repeated measurements of cardiac and hepatic MR.</p> <p>Results</p> <p>For the heart, deferiprone and the combination of deferiprone and deferoxamine significantly reduced cardiac iron at all levels of iron loading. As patients were on deferasirox for a shorter time, a second analysis ("Initial interval analysis") assessing the change between the first two recorded MR results for both cardiac and hepatic iron (minimum interval 12 months) was made. Combination therapy achieved the most rapid fall in cardiac iron load at all levels and deferiprone alone was significantly effective with moderate and mild iron load. In the liver, deferasirox effected significant falls in iron load and combination therapy resulted in the most rapid decline.</p> <p>Conclusion</p> <p>With the knowledge of the efficacy of the different available regimes and the specific iron load in the heart and the liver, appropriate tailoring of chelation therapy should allow clearance of iron. Combination therapy is best in reducing both cardiac and hepatic iron, while monotherapy with deferiprone or deferasirox are effective in the heart and liver respectively. The outcomes of this study may be useful to physicians as to the chelation they should prescribe according to the levels of iron load found in the heart and liver by MR.</p

    Coordination chemistry and biology of chelators for the treatment of iron overload disorders

    Get PDF
    Treatment of the medical condition generally referred to as iron overload through the delivery of chelators has recently received a major boost. In 2005 Novartis gained FDA approval for the drug deferasirox, which may be taken orally. Until this time most patients with Fe overload have had to endure long periods of subcutaneous infusions of the orally ineffective drug desferrioxamine (desferal) which has led to major problems with patient compliance. An effective Fe chelator must possess a number of properties for it to be able to complex Fe in vivo and be excreted intact. This Perspective will provide an overview of the current state of chelators for Fe overload; both those currently approved and those undergoing preclinical development

    The relationship between cardiac and liver iron evaluated by MR imaging in haematological malignancies and chronic liver disease

    Get PDF
    Although iron overload is clinically significant, only limited data have been published on iron overload in haematological diseases. We investigated cardiac and liver iron accumulation by magnetic resonance imaging (MRI) in a cohort of 87 subjects who did not receive chelation, including 59 haematological patients. M-HIC (MRI-based hepatic iron concentration, normal values <36 μmol/g) is a non-invasive, liver biopsy-calibrated method to analyse iron concentration. This method, calibrated to R2 (transverse relaxation rate), was used as a reference standard (M-HIC(R2)). Transfusions and ferritin were evaluated. Mean M-HIC(R2) and cardiac R* of all patients were 142 μmol/g (95% CI, 114–170) and 36.4 1/s (95% CI, 34.2–38.5), respectively. M-HIC(R2) was higher in haematological patients than in patients with chronic liver disease or normal controls (P<0.001). Clearly elevated cardiac R2* was found in two myelodysplastic syndrome (MDS) patients with severe liver iron overload. A poor correlation was found between liver and cardiac iron (n=82, r=0.322, P=0.003), in contrast to a stronger correlation in MDS (n=7, r=0.905, P=0.005). In addition to transfusions, MDS seemed to be an independent factor in iron accumulation. In conclusion, the risk for cardiac iron overload in haematological diseases other than MDS is very low, despite the frequently found liver iron overload

    On improvement in ejection fraction with iron chelation in thalassemia major and the risk of future heart failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trials of iron chelator regimens have increased the treatment options for cardiac siderosis in beta-thalassemia major (TM) patients. Treatment effects with improved left ventricular (LV) ejection fraction (EF) have been observed in patients without overt heart failure, but it is unclear whether these changes are clinically meaningful.</p> <p>Methods</p> <p>This retrospective study of a UK database of TM patients modelled the change in EF between serial scans measured by cardiovascular magnetic resonance (CMR) to the relative risk (RR) of future development of heart failure over 1 year. Patients were divided into 2 strata by baseline LVEF of 56-62% (below normal for TM) and 63-70% (lower half of the normal range for TM).</p> <p>Results</p> <p>A total of 315 patients with 754 CMR scans were analyzed. A 1% absolute increase in EF from baseline was associated with a statistically significant reduction in the risk of future development of heart failure for both the lower EF stratum (EF 56-62%, RR 0.818, p < 0.001) and the higher EF stratum (EF 63-70%, RR 0.893 p = 0.001).</p> <p>Conclusion</p> <p>These data show that during treatment with iron chelators for cardiac siderosis, small increases in LVEF in TM patients are associated with a significantly reduced risk of the development of heart failure. Thus the iron chelator induced improvements in LVEF of 2.6% to 3.1% that have been observed in randomized controlled trials, are associated with risk reductions of 25.5% to 46.4% for the development of heart failure over 12 months, which is clinically meaningful. In cardiac iron overload, heart mitochondrial dysfunction and its relief by iron chelation may underlie the changes in LV function.</p

    Review of journal of cardiovascular magnetic resonance 2010

    Get PDF
    There were 75 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2010, which is a 34% increase in the number of articles since 2009. The quality of the submissions continues to increase, and the editors were delighted with the recent announcement of the JCMR Impact Factor of 4.33 which showed a 90% increase since last year. Our acceptance rate is approximately 30%, but has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. Last year for the first time, the Editors summarized the papers for the readership into broad areas of interest or theme, which we felt would be useful to practitioners of cardiovascular magnetic resonance (CMR) so that you could review areas of interest from the previous year in a single article in relation to each other and other recent JCMR articles [1]. This experiment proved very popular with a very high rate of downloading, and therefore we intend to continue this review annually. The papers are presented in themes and comparison is drawn with previously published JCMR papers to identify the continuity of thought and publication in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication

    Prevention of cardiomyopathy in transfusion-dependent homozygous thalassaemia today and the role of cardiac magnetic resonance imaging

    No full text
    Transfusion and iron chelation therapy revolutionised survival and reduced morbidity in patients with transfusion-dependent beta thalassaemia major. Despite these improvements, cardiac disease remained the most common cause of death in those patients. Recently the ability to determine the degree of cardiac iron overload, through cardiac magnetic resonance imaging (CMR) has allowed more logical approaches to iron removal, particularly from the heart. The availability of two oral chelators, deferiprone and deferasirox has reduced the need for the injectable chelator deferrioxamine and an additional benefit has been that deferiprone has been shown to be more cardioprotective than deferrioxamine. This review on the prevention of cardiac disease makes recommendations on the chelation regime that would be desirable for patients according to their cardiac iron status as determined by CMR determined by CMR. It also discusses approaches to chelation management should CMR not be available. © 2009 Athanassios Aessopos et al
    corecore