165 research outputs found

    Solar convection and magneto-convection simulations

    Get PDF
    Magneto-convection simulations with two scenarios have been performed: in one, horizontal magnetic field is advected into the computational domain by fluid entering at the bottom. In the other, an initially uniform vertical magnetic field is imposed on a snapshot of non-magnetic convection and allowed to evolve. In both cases, the field is swept into the intergranular lanes and the boundaries of the underlying mesogranules. The largest field concentrations at the surface reach pressure balance with the surrounding gas. They suppress both horizontal and vertical flows, which reduces the heat transport. They cool, become evacuated and their optical depth unity surface is depressed by several hundred kilometers. Micropores form, typically where a small granule disappears and surrounding flux tubes squeeze into its previous location

    The Three-dimensional Evolution of Rising, Twisted Magnetic Flux Tubes in a Gravitationally Stratified Model Convection Zone

    Get PDF
    We present three-dimensional numerical simulations of the rise and fragmentation of twisted, initially horizontal magnetic flux tubes which evolve into emerging Omega-loops. The flux tubes rise buoyantly through an adiabatically stratified plasma that represents the solar convection zone. The MHD equations are solved in the anelastic approximation, and the results are compared with studies of flux tube fragmentation in two dimensions. We find that if the initial amount of field line twist is below a critical value, the degree of fragmentation at the apex of a rising Omega-loop depends on its three-dimensional geometry: the greater the apex curvature of a given Omega-loop, the lesser the degree of fragmentation of the loop as it approaches the photosphere. Thus, the amount of initial twist necessary for the loop to retain its cohesion can be reduced substantially from the two-dimensional limit. The simulations also suggest that as a fragmented flux tube emerges through a relatively quiet portion of the solar disk, extended crescent-shaped magnetic features of opposite polarity should form and steadily recede from one another. These features eventually coalesce after the fragmented portion of the Omega-loop emerges through the photosphere.Comment: 17 pages, 17 figures, uses AAS LaTeX macros v5.0. ApJ, in pres

    Estimating Electric Fields from Vector Magnetogram Sequences

    Full text link
    Determining the electric field (E-field) distribution on the Sun's photosphere is essential for quantitative studies of how energy flows from the Sun's photosphere, through the corona, and into the heliosphere. This E-field also provides valuable input for data-driven models of the solar atmosphere and the Sun-Earth system. We show how Faraday's Law can be used with observed vector magnetogram time series to estimate the photospheric E-field, an ill-posed inversion problem. Our method uses a "poloidal-toroidal decomposition" (PTD) of the time derivative of the vector magnetic field. The PTD solutions are not unique; the gradient of a scalar potential can be added to the PTD E-field without affecting consistency with Faraday's Law. We present an iterative technique to determine a potential function consistent with ideal MHD evolution; but this E-field is also not a unique solution to Faraday's Law. Finally, we explore a variational approach that minimizes an energy functional to determine a unique E-field, similar to Longcope's "Minimum Energy Fit". The PTD technique, the iterative technique, and the variational technique are used to estimate E-fields from a pair of synthetic vector magnetograms taken from an MHD simulation; and these E-fields are compared with the simulation's known electric fields. These three techniques are then applied to a pair of vector magnetograms of solar active region NOAA AR8210, to demonstrate the methods with real data.Comment: 41 pages, 10 figure

    Convective Dynamos and the Minimum X-ray Flux in Main Sequence Stars

    Full text link
    The objective of this paper is to investigate whether a convective dynamo can account quantitatively for the observed lower limit of X-ray surface flux in solar-type main sequence stars. Our approach is to use 3D numerical simulations of a turbulent dynamo driven by convection to characterize the dynamic behavior, magnetic field strengths, and filling factors in a non-rotating stratified medium, and to predict these magnetic properties at the surface of cool stars. We use simple applications of stellar structure theory for the convective envelopes of main-sequence stars to scale our simulations to the outer layers of stars in the F0--M0 spectral range, which allows us to estimate the unsigned magnetic flux on the surface of non-rotating reference stars. With these estimates we use the recent results of \citet{Pevtsov03} to predict the level of X-ray emission from such a turbulent dynamo, and find that our results compare well with observed lower limits of surface X-ray flux. If we scale our predicted X-ray fluxes to \ion{Mg}{2} fluxes we also find good agreement with the observed lower limit of chromospheric emission in K dwarfs. This suggests that dynamo action from a convecting, non-rotating plasma is a viable alternative to acoustic heating models as an explanation for the basal emission level seen in chromospheric, transition region, and coronal diagnostics from late-type stars.Comment: ApJ, accepted, 30 pages with 7 figure

    Screening and Treatment Outcomes in Adults and Children With Type 1 Diabetes and Asymptomatic Celiac Disease: The CD-DIET Study.

    Get PDF
    OBJECTIVE: To describe celiac disease (CD) screening rates and glycemic outcomes of a gluten-free diet (GFD) in patients with type 1 diabetes who are asymptomatic for CD. RESEARCH DESIGN AND METHODS: Asymptomatic patients (8-45 years) were screened for CD. Biopsy-confirmed CD participants were randomized to GFD or gluten-containing diet (GCD) to assess changes in HbA RESULTS: Adults had higher CD-seropositivity rates than children (6.8% [95% CI 4.9-8.2%, CONCLUSIONS: CD is frequently observed in asymptomatic patients with type 1 diabetes, and clinical vigilance is warranted with initiation of a GFD
    • 

    corecore