4 research outputs found

    Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance

    Get PDF
    This contribution reports the fabrication and characterization of ultrathin films of nanoparticles of the water stable microporous Al tricarboxylate metal organic framework MIL-96(Al). The preparation of MOF dispersions in chloroform has been optimized to obtain dense monolayer films of good quality, without nanoparticle agglomeration, at the air-water interface that can be deposited onto solid substrates of different nature without any previous substrate functionalization. The MOF studied shows great interest for CO2 capture because it presents Al3+ Lewis centers and hydroxyl groups that strongly interact with CO2 molecules. A comparative CO2 adsorption study on drop-cast, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) films using a Quartz Crystal Microbalance-based setup (QCM) has revealed that the CO2 uptake depends strongly on the film fabrication procedure and the storage conditions. Noteworthy the CO2 adsorption capacity of LB films is increased by 30% using a simple and green treatment (immersion of the film into water during 12 h just after film preparation). Finally, the stability of LB MOF monolayers upon several CO2 adsorption/desorption cycles has been demonstrated, showing that CO2 can be easily desorbed from the films at 303 K by flowing an inert gas (He). These results show that MOF LB monolayers can be of great interest for the development of MOF-based devices that require the use of very small MOF quantities, especially gas sensors

    Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO 2 Capture

    Get PDF
    International audienceMembrane gas separation units are gaining increasing attention owing to their relatively low energy consumption, ease of operation and environmental aspects. Metal-organic framework (MOF)-mixed matrix membranes (MMMs) are proposed as alternative materials delivering both the promising performance benefits from embedded MOF fillers and the processing features of polymers. In order to gain insight into the influence of MOF filler and polymer on membrane performance, eight different composites are studied by combining four MOFs and two polymers. MOF materials (NH2-MIL-53(Al), MIL-69(Al), MIL-96(Al) and ZIF-94(Zn)) with various chemical functionalities, topologies, and dimensionalities of porosity were employed as fillers, while two typical polymers with different permeability-selectivity properties (6FDA-DAM and Pebax) were deliberately selected as matrices. Separation results are rationalized on the basis of thorough characterization of the main components of the composites. The observed differences in membrane performance in the separation of CO2 from N2 are explained on the basis of gas solubility, diffusivity properties and compatibility between the filler and polymer phases
    corecore