5,049 research outputs found

    Evolution of reconnection along an arcade of magnetic loops

    Full text link
    RHESSI observations of a solar flare showing continuous motions of double hard X-ray sources interpreted as footpoints of magnetic loops are presented. The temporal evolution shows many distinct emission peaks of duration of some tens of seconds ('elementary flare bursts'). Elementary flare bursts have been interpreted as instabilities or oscillations of the reconnection process leading to an unsteady release of magnetic energy. These interpretations based on two-dimensional concepts cannot explain these observations, showing that the flare elements are displaced in a third dimension along the arcade. Therefore, the observed flare elements are not a modulation of the reconnection process, but originate as this process progresses along an arcade of magnetic loops. Contrary to previous reports, we find no correlation between footpoint motion and hard X-ray flux. This flare apparently contradicts the predictions of the standard translation invariant 2.5D reconnection models.Comment: 4 pages, 3 figures, to be published in Astrophysical Journal Letter

    Migration and giant planet formation

    Full text link
    We extend the core-accretion model of giant gaseous planets by Pollack et al. (\cite{P96}) to include migration, disc evolution and gap formation. Starting with a core of a fraction of an Earth's mass located at 8 AU, we end our simulation with the onset of runaway gas accretion when the planet is at 5.5 AU 1 Myr later. This timescale is about a factor ten shorter than the one found by Pollack et al. (\cite{P96}) even though the disc was less massive initially and viscously evolving. Other initial conditions can lead to even shorter timescales. The reason for this speed-up is found to result from the fact that a moving planet does not deplete its feeding zone to the extend of a static planet. Thus, the uncomfortably long formation timescale associated with the core-accretion scenario can be considerably reduced and brought in much better agreement with the typical disc lifetimes inferred from observations of young circumstellar discs.Comment: 9 pages, 2 figures, published in A&A Letter

    Theoretical and material studies on thin-film electroluminescent devices

    Get PDF
    The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as accessed by x ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces

    Spectral Hardening of Large Solar Flares

    Full text link
    RHESSI observations are used to quantitatively study the hard X-ray evolution in 5 large solar flares selected for spectral hardening in the course of the event. The X-ray bremsstrahlung emission from non-thermal electrons is characterized by two spectroscopically distinct phases: impulsive and gradual. The impulsive phase usually consists of several emission spikes following a soft-hard-soft spectral pattern, whereas the gradual stage manifests itself as spectral hardening while the flux slowly decreases. Both the soft-hard-soft (impulsive) phase and the hardening (gradual) phase are well described by piecewise linear dependence of the photon spectral index on the logarithm of the hard X-ray flux. The different linear parts of this relation correspond to different rise and decay phases of emission spikes. The temporal evolution of the spectra is compared with the configuration and motion of the hard X-ray sources in RHESSI images. These observations reveal that the two stages of electron acceleration causing these two different behaviors are closely related in space and time. The transition between the impulsive and gradual phase is found to be smooth and progressive rather than abrupt. This suggests that they arise because of a slow change in a common accelerator rather than being caused by two independent and distinct acceleration processes. We propose that the hardening during the decay phase is caused by continuing particle acceleration with longer trapping in the accelerator before escape.Comment: accepted by Ap

    Theory of planet formation and comparison with observation: Formation of the planetary mass-radius relationship

    Full text link
    The planetary mass-radius diagram is an observational result of central importance to understand planet formation. We present an updated version of our planet formation model based on the core accretion paradigm which allows to calculate planetary radii and luminosities during the entire formation and evolution of the planets. We first study with it the formation of Jupiter, and compare with previous works. Then we conduct planetary population synthesis calculations to obtain a synthetic mass-radius diagram which we compare with the observed one. Except for bloated Hot Jupiters which can be explained only with additional mechanisms related to their proximity to the star, we find a good agreement of the general shape of the observed and the synthetic mass-radius diagram. This shape can be understood with basic concepts of the core accretion model.Comment: Proceedings Haute Provence Observatory Colloquium: Detection and Dynamics of Transiting Exoplanets (23-27 August 2010). Edited by F. Bouchy, R. F. Diaz & C. Moutou. Extended version: 17 pages, 8 figure

    Planet Population Synthesis

    Full text link
    With the increasing number of exoplanets discovered, statistical properties of the population as a whole become unique constraints on planet formation models provided a link between the description of the detailed processes playing a role in this formation and the observed population can be established. Planet population synthesis provides such a link. The approach allows to study how different physical models of individual processes (e.g., proto-planetary disc structure and evolution, planetesimal formation, gas accretion, migration, etc.) affect the overall properties of the population of emerging planets. By necessity, planet population synthesis relies on simplified descriptions of complex processes. These descriptions can be obtained from more detailed specialised simulations of these processes. The objective of this chapter is twofold: 1) provide an overview of the physics entering in the two main approaches to planet population synthesis and 2) present some of the results achieved as well as illustrate how it can be used to extract constraints on the models and to help interpret observations.Comment: 23 pages, 8 figures, accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Henning. Updated references relative to v

    Genomic aberrations in normal tissue adjacent to HER2-amplified breast cancers: field cancerization or contaminating tumor cells?

    Get PDF
    Field cancerization effects as well as isolated tumor cell foci extending well beyond the invasive tumor margin have been described previously to account for local recurrence rates following breast conserving surgery despite adequate surgical margins and breast radiotherapy. To look for evidence of possible tumor cell contamination or field cancerization by genetic effects, a pilot study (Study 1: 12 sample pairs) followed by a verification study (Study 2: 20 sample pairs) were performed on DNA extracted from HER2-positive breast tumors and matching normal adjacent mammary tissue samples excised 1-3 cm beyond the invasive tumor margin. High-resolution molecular inversion probe (MIP) arrays were used to compare genomic copy number variations, including increased HER2 gene copies, between the paired samples; as well, a detailed histologic and immunohistochemical (IHC) re-evaluation of all Study 2 samples was performed blinded to the genomic results to characterize the adjacent normal tissue composition bracketing the DNA-extracted samples. Overall, 14/32 (44 %) sample pairs from both studies produced genome-wide evidence of genetic aberrations including HER2 copy number gains within the adjacent normal tissue samples. The observed single-parental origin of monoallelic HER2 amplicon haplotypes shared by informative tumor-normal pairs, as well as commonly gained loci elsewhere on 17q, suggested the presence of contaminating tumor cells in the genomically aberrant normal samples. Histologic and IHC analyses identified occult 25-200 μm tumor cell clusters overexpressing HER2 scattered in more than half, but not all, of the genomically aberrant normal samples re-evaluated, but in none of the genomically normal samples. These genomic and microscopic findings support the conclusion that tumor cell contamination rather than genetic field cancerization represents the likeliest cause of local clinical recurrence rates following breast conserving surgery, and mandate caution in assuming the genomic normalcy of histologically benign appearing peritumor breast tissue

    Device and method for frictionally testing materials for ignitability

    Get PDF
    Test apparatus for determining ignition characteristics of various metal in oxidizer environments simulating operating conditions for materials is invented. The test apparatus has a chamber through which the oxidizing agent flows, and means for mounting a stationary test sample therein, a powered, rotating shaft in the chamber rigidly mounts a second test sample. The shaft is axially movable to bring the samples into frictional engagement and heated to the ignition point. Instrumentation connected to the apparatus provides for observation of temperatures, pressures, loads on and speeds of the rotating shaft, and torques whereby components of stressed oxygen systems can be selected which will avoid accidental fires under working conditions

    The spectral evolution of impulsive solar X-ray flares. II.Comparison of observations with models

    Full text link
    We study the evolution of the spectral index and the normalization (flux) of the non-thermal component of the electron spectra observed by RHESSI during 24 solar hard X-ray flares. The quantitative evolution is confronted with the predictions of simple electron acceleration models featuring the soft-hard-soft behaviour. The comparison is general in scope and can be applied to different acceleration models, provided that they make predictions for the behavior of the spectral index as a function of the normalization. A simple stochastic acceleration model yields plausible best-fit model parameters for about 77% of the 141 events consisting of rise and decay phases of individual hard X-ray peaks. However, it implies unphysically high electron acceleration rates and total energies for the others. Other simple acceleration models such as constant rate of accelerated electrons or constant input power have a similar failure rate. The peaks inconsistent with the simple acceleration models have smaller variations in the spectral index. The cases compatible with a simple stochastic model require typically a few times 10^36 electrons accelerated per second at a threshold energy of 18 keV in the rise phases and 24 keV in the decay phases of the flare peaks.Comment: 9 pages, 4 figures, accepted for publication by A&

    A multipotent precursor in the thymus maps to the branching point of the T versus B lineage decision

    Get PDF
    Hematopoietic precursors continuously colonize the thymus where they give rise mainly to T cells, but also to B and dendritic cells. The lineage relationship between these three cell types is unclear, and it remains to be determined if precursors in the thymus are multipotent, oligopotent, or lineage restricted. Resolution of this question necessitates the determination of the clonal differentiation potential of the most immature precursors in the thymus. Using a CC chemokine receptor 9–enhanced green fluorescent protein knock-in allele like a surface marker of unknown function, we identify a multipotent precursor present in bone marrow, blood, and thymus. Single cells of this precursor give rise to T, B, and dendritic cells. A more differentiated stage of this multipotent precursor in the thymus has lost the capacity to generate B but not T, dendritic, and myeloid cells. Thus, the newly identified precursor maps to the branching point of the T versus B lineage decision in the hematopoietic lineage hierarchy
    corecore