203 research outputs found

    Nondestructive monitoring of ageing of Alkali resistant Glass fiber reinforced cement (GRC)

    Full text link
    Glass fiber reinforced cement (GRC) is a composite material made of portland cement mortar and alkali resistant (AR) fibers. AR fibers are added to portland cement to give the material additional flexural strength and toughness. However, ageing deteriorates the fibers and as a result the improvement in the mechanical properties resulted from the fiber addition disappears as the structure becomes old. The aim of this paper is monitoring GRC ageing by nondestructive evaluation (NDE) techniques. Two different NDE techniques (1) nonlinear impact resonant acoustic spectroscopy analysis and (2) propagating ultrasonic guided waves are used for this purpose. Both techniques revealed a reduction of the nonlinear behavior in the GRC material with ageing. Specimens are then loaded to failure to obtain their strength and stiffness. Compared to the un-aged specimens, the aged specimens are found to exhibit more linear behavior, have more stiffness but less toughness. Finally, undisturbed fragments on the fracture surface from mechanical tests are inspected under the electron microscope, to understand the fundamental mechanisms that cause the change in the GRC behavior with ageing.The authors want to acknowledge the financial support of the Ministerio de Ciencia e Innovacion MICINN, Spain, and FEDER funding (Ondacem Project: BIA 2010-19933) and BES-2011-044624. Also thanks to PAID-02-11 Program from Universitat Politecnica de Valencia.Eiras Fernández, JN.; Kundu, T.; Bonilla Salvador, MM.; Paya Bernabeu, JJ. (2013). Nondestructive monitoring of ageing of Alkali resistant Glass fiber reinforced cement (GRC). Journal of Nondestructive Evaluation - NDT and E International. 32:300-314. https://doi.org/10.1007/s10921-013-0183-yS30031432Bentur, A., Fibre, M.S.: Reinforced Cementitious Composites, 2nd edn. Taylor and Francis, New York (2007)Purnell, P., Short, N.R., Page, C.L.: A static fatigue model for the durability of glass fibre reinforced cement. J. Mater. Sci. 36(22), 5385–5390 (2001)Ferreira, J.G., Branco, F.A.: Structural application of GRC in telecommunication towers. Constr. Build. Mater. 21(1), 19–28 (2007)Bentur, A., Ben-Bassat, M., Schneider, D.: Durability of glass-fiber-reinforced cements with different alkali-resistant glass fibers. J. Am. Ceram. Soc. 68(4), 203–208 (1985)Cheng, J., Liang, W., Hu, Y., Chen, Q., Frischat, G.H.: Development of a new alkali resistant coating. J. Sol-Gel Sci. Technol. 27(3), 309–313 (2003)Liang, W., Cheng, J., Hu, Y., Luo, H.: Improved properties of GRC composites using commercial E-glass fibers with new coatings. Mater. Res. Bull. 37(4), 641–646 (2002)Payá, J., Bonilla, M., Borrachero, M.V., Monzó, J., Peris-Mora, E., Lalinde, L.F.: Reusing fly ash in glass fibre reinforced cement: a new generation of high-quality GRC composites. Waste Manag. 27(10), 1416–1421 (2007)Zhang, Y., Sun, W., Shang, L., Pan, G.: The effect of high content of fly ash on the properties of glass fiber reinforced cementitious composites. Cem. Concr. Res. 27(12), 1885–1891 (1997)Purnell, P., Short, N., Page, C.: Super-critical carbonation of glass-fibre reinforced cement. Part 1: mechanical testing and chemical analysis. Composites, Part A, Appl. Sci. Manuf. 32(12), 1777–1787 (2001)EN 1170-8:2008. Test method for glass-fibre reinforced cement. Cyclic weathering type testPurnell, P.: Interpretation of climatic temperature variations for accelerated ageing models. J. Mater. Sci. 39(1), 113–118 (2004)Enfedaque, A., Sánchez Paradela, L., Sánchez-Gálvez, V.: An alternative methodology to predict aging effects on the mechanical properties of glass fiber reinforced cements (GRC). Constr. Build. Mater. 27(1), 425–431 (2012)Litherland, K.L., Maguire, P., Proctor, B.A.: A test method for the strength of glass fibres in cement. Int. J. Cem. Compos. Lightweight Concr. 6(1), 39–45 (1984)Itterbeeck, P., Cuypers, H., Orlowsky, J., Wastiels, J.: Evaluation of the strand in cement (SIC) test for GRCs with improved durability. Mater. Struct. 41(6), 1109–1116 (2007)Guyer, R.A., Johnson, P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30 (1999)Johnson, P.A.: Nonequilibrium nonlinear dynamics in solids: state of the art. In: Delsanto, P.P. (ed.) Universality of Nonclassical Nonlinearity, pp. 49–69. Springer, New York (2006)Guyer, R.A., McCall, K.R., Boitnott, G.N.: Hysteresis, discrete memory, and nonlinear wave propagation in rock: a new paradigm. Phys. Rev. Lett. 74(17), 3491–3494 (1995)Mayergoyz, I.D.: Mathematical Models of Hysteresis and Their Applications. Academic Press, New York (2003)Van Den Abeele, K.E.A., Carmeliet, J., Ten Cate, J.A., Johnson, P.A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestruct. Eval. 12(1), 31–42 (2000)Chen, J., Jayapalan, A.R., Kim, J.Y., Kurtis, K.E., Jacobs, L.J.: Rapid evaluation of alkali–silica reactivity of aggregates using a nonlinear resonance spectroscopy technique. Cem. Concr. Res. 40(6), 914–923 (2010)Leśnicki, K.J., Kim, J.Y., Kurtis, K.E., Jacobs, L.J.: Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique. Nondestruct. Test. Eval. Int. 44(8), 721–727 (2011)Bouchaala, F., Payan, C., Garnier, V., Balayssac, J.P.: Carbonation assessment in concrete by nonlinear ultrasound. Cem. Concr. Res. 41(5), 557–559 (2011)Eiras, J.N., Popovics, J.S., Borrachero, M.V., Monzó, J., Payá, J.: Nonlinear impact resonant acoustic spectroscopy to discern mechanical damage in cement based materials. In: 15th International Conference on Experimental Mechanics, Porto, Portugal (2012)Kundu, T.: Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization. CRC Press, Boca Raton (2004)Kundu, T.: Ultrasonic and Electromagnetic NDE for Structure and Material Characterization—Engineering and Biomedical Applications. CRC Press, Boca Raton (2012)Dutta, D., Sohn, H., Harries, K.A., Rizzo, P.: A nonlinear acoustic technique for crack detection in metallic structures. Struct. Health Monit. 8(3), 251–262 (2009)Aymerich, F., Staszewski, W.J.: Impact damage detection in composite laminates using nonlinear acoustics. Composites, Part A, Appl. Sci. Manuf. 41(9), 1084–1092 (2010)EN 1170-1:1998. Precast concrete products. Test method for glass-fibre reinforced cement. Measuring the consistency of the matrix, “Slump test” methodMontgomery, P.L.: A block Lanczos algorithm for finding dependencies over GF(2). In: EUROCRYPT ’95. Lecture Notes in Computer Science, vol. 921, pp. 106–120. Springer, Berlin (1995)EN 1170-5:1998. Precast concrete products. Test method for glass-fibre reinforced cement. Measuring bending strength, “complete bending test” methodRomero, R., Zúnica, L.R.: Métodos Estadísticos en Ingeniería. Universitat Politècnica València, Valencia (2005)Kundu, T.: Fundamentals of Fracture Mechanics. CRC Press, Boca Raton (2008)ASTM C 215:08. Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens (2008)Hewlett, P.C.: Lea’s Chemistry of Cement and Concrete, 4th edn. Butterworth-Heinemann, Oxford (2003)Zhu, W., Bartos, P.J.M.: Assessment of interfacial microstructure and bond properties in aged GRC using a novel microindentation method. Cem. Concr. Res. 27(11), 1701–1711 (1997)Purnell, P., Buchanan, A.J., Short, N.R., Page, C.L., Majumdar, A.J.: Determination of bond strength in glass fibre reinforced cement using petrography and image analysis. J. Mater. Sci. 35(18), 4653–4659 (2000)Visalvanich, K., Naaman, A.E.: Fracture model for fiber reinforced concrete. J. ACI Proc. 80(2), 128–138 (1983)Kundu, T., Jang, H.S., Cha, Y.H., Desai, C.S.: A simple model to predict the effect of volume fraction, diameter, and length of fibers on strength variation of fiber reinforced brittle matrix composites. Int. J. Numer. Anal. Methods Geomech. 24, 655–673 (2000)Li, V.C., Maalej, M.: Toughening in cement based composites. Part II: fiber reinforced composites. Cem. Concr. Compos. 18, 239–249 (1996)Van Den Abeele, K.E.A., Johnson, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12(1), 17–30 (2000

    The functioning of the Cuban home hospitalization programme: a descriptive analysis

    Get PDF
    BACKGROUND: Over the last decades hospital at home (HaH) programmes have been set up in many, mainly European, countries. The Cuban HaH programme is not hospital driven, but the responsibility of the first line health services, and family doctors play a pivotal role. METHODS: We analyse the structure and functioning of the Cuban programme. In this descriptive study, information was prospectively collected on HaH patients admitted between July 1st 2001 and June 30th 2002. RESULTS: Admission rates varied between areas from 0.014 to 0.035 per person per year (ppy). The < 1 y and 1-4 y age groups had the highest admission rates. In one area the follow-up of pregnancy problems led to high 15-24 y and 25-49 y female admission rates (0,070 and 0,058 respectively). Respiratory affections were the most frequent reason for admission (32,6%), followed by early hospital discharge (16,0%) and gynaeco-obstetrical problems (10.8%). The median length of stay varied from 5 to 7 days between regions and from 5 days (early discharge) to 7 days (gynaeco-obstetrical problems) in function of the reason for admission. On average an HaH episode entailed 1.4 and 1.6 contacts per patient-day with the family doctor and nurse respectively. CONCLUSION: Difference in admission criteria in function of geography, distance to the hospital, transport facilities, and staff factors, as well as differences in hospital policy on early discharge explain the observed variability. The programme plays an important role in the integrated approach to quality care in the Cuban health system, but could benefit from more uniform admission criteria

    Application of recycled tyre cord in concrete for shrinkage crack control

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43027/1/10855_2004_Article_BF00275355.pd

    Methacholine bronchial provocation measured by spirometry versus wheeze detection in preschool children

    Get PDF
    BACKGROUND: Determination of PC(20)-FEV(1) during Methacholine bronchial provocation test (MCT) is considered to be impossible in preschool children, as it requires repetitive spirometry sets. The aim of this study was to assess the feasibility of determining PC(20)-FEV(1) in preschool age children and compares the results to the wheeze detection (PCW) method. METHODS: 55 preschool children (ages 2.8–6.4 years) with recurrent respiratory symptoms were recruited. Baseline spirometry and MCT were performed according to ATS/ERS guidelines and the following parameters were determined at baseline and after each inhalation: spirometry-indices, lung auscultation at tidal breathing, oxygen saturation, respiratory and heart rate. Comparison between PCW and PC(20)-FEV(1) and clinical parameters at these end-points was done by paired Student's t-tests. RESULTS AND DISCUSSION: Thirty-six of 55 children (65.4%) successfully performed spirometry-sets up to the point of PCW. PC(20)-FEV(1) occurred at a mean concentration of 1.70+/-2.01 while PCW occurred at a mean concentration of 4.37+/-3.40 mg/ml (p < 0.05). At PCW, all spirometry-parameters were markedly reduced: FVC by 41.3+/-16.4% (mean +/-SD); FEV(1) by 44.7+/-14.5%; PEFR by 40.5+/-14.5 and FEF(25–75) by 54.7+/-14.4% (P < 0.01 for all parameters). This reduction was accompanied by de-saturation, hyperpnoea, tachycardia and a response to bronchodilators. CONCLUSION: Determination of PC(20)-FEV(1) by spirometry is feasible in many preschool children. PC(20)-FEV(1) often appears at lower provocation dose than PCW. The lower dose may shorten the test and encourage participation. Significant decrease in spirometry indices at PCW suggests that PC(20)-FEV(1) determination may be safer

    Brown Planthopper (N. lugens Stal) Feeding Behaviour on Rice Germplasm as an Indicator of Resistance

    Get PDF
    BACKGROUND: The brown planthopper (BPH) Nilaparvata lugens (Stal) is a serious pest of rice in Asia. Development of novel control strategies can be facilitated by comparison of BPH feeding behaviour on varieties exhibiting natural genetic variation, and then elucidation of the underlying mechanisms of resistance. METHODOLOGY/PRINCIPAL FINDINGS: BPH feeding behaviour was compared on 12 rice varieties over a 12 h period using the electrical penetration graph (EPG) and honeydew clocks. Seven feeding behaviours (waveforms) were identified and could be classified into two phases. The first phase involved patterns of sieve element location including non penetration (NP), pathway (N1+N2+N3), xylem (N5) [21] and two new feeding waveforms, derailed stylet mechanics (N6) and cell penetration (N7). The second feeding phase consisted of salivation into the sieve element (N4-a) and sieve element sap ingestion (N4-b). Production of honeydew drops correlated with N4-b waveform patterns providing independent confirmation of this feeding behaviour. CONCLUSIONS/SIGNIFICANCE: Overall variation in feeding behaviour was highly correlated with previously published field resistance or susceptibility of the different rice varieties: BPH produced lower numbers of honeydew drops and had a shorter period of phloem feeding on resistant rice varieties, but there was no significant difference in the time to the first salivation (N4-b). These qualitative differences in behaviour suggest that resistance is caused by differences in sustained phloem ingestion, not by phloem location. Cluster analysis of the feeding and honeydew data split the 12 rice varieties into three groups: susceptible, moderately resistant and highly resistant. The screening methods that we have described uncover novel aspects of the resistance mechanism (or mechanisms) of rice to BPH and will in combination with molecular approaches allow identification and development of new control strategies
    corecore