119 research outputs found

    Thermoelectric effects in correlated quantum dots and molecules

    Full text link
    We investigate thermoelectric properties of correlated quantum dots and molecules, described by a single level Anderson model coupled to conduction electron leads, by using Wilson's numerical renormalization group method. In the Kondo regime, the thermopower, S(T)S(T), exhibits two sign changes, at temperatures T=T1T=T_{1} and T=T2>T1T=T_{2}>T_{1}. We find that T2T_{2} is of order the level width Γ\Gamma and T1>TpTKT_{1}> T_{p}\approx T_{K}, where TpT_{p} is the position of the Kondo induced peak in the thermopower and TKT_{K} is the Kondo scale. No sign change is found outside the Kondo regime, or, for weak correlations, making a sign change in S(T)S(T) a particularly sensitive signature of strong correlations and Kondo physics. For molecules, we investigate the effect of screening by conduction electrons on the thermoelectric transport. We find that a large screening interaction enhances the figure of merit in the Kondo and mixed valence regimes.Comment: 4 pages, 3 figures; to appear in the Proceedings of the International Conference on Strongly Correlated Electron Systems, Santa Fe 2010; revised version: typos corrected and references update

    CeRu4_4Sn6_6: heavy fermions emerging from a Kondo-insulating state

    Full text link
    The combination of low-temperature specific-heat and nuclear-magnetic-resonance (NMR) measurements reveals important information of the ground-state properties of CeRu4_4Sn6_6, which has been proposed as a rare example of a tetragonal Kondo-insulator (KI). The NMR spin-latticerelaxation rate 1/T11/T_1 deviates from the Korringa law below 100 K signaling the onset of an energy gap ΔEg1/kB30\Delta E_g1/k_B \simeq 30K. This gap is stable against magnetic fields up to 10 T. Below 10 K, however, unusual low-energy excitations of in-gap states are observed, which depend strongly on the field H. The specific heat C detects these excitations in the form of an enhanced Sommerfeld coefficient γ=C(T)/T\gamma = C(T)/T : In zero field, γ\gamma increases steeply below 5 K, reaching a maximum at 0.1 K, and then saturates at γ=0.6\gamma = 0.6 J/molK2^2. This maximum is shifted to higher temperatures with increasing field suggesting a residual density of states at the Fermi level developing a spin gap ΔEg2\Delta E_g2. A simple model, based on two narrow quasiparticle bands located at the Fermi level - which cross the Fermi level in zero field at 0.022 states/meV f.u. - can account qualitatively as well as quantitatively for the measured observables. In particular, it is demonstrated that fitting our data of both specific heat and NMR to the model, incorporating a Ce magnetic moment of μ=ΔEg1/μ0H1μB\mu = \Delta E_g1/\mu_{0H} \simeq 1 \mu_B, leads to the prediction of the field dependence of the gap. Our measurements rule out the presence of a quantum critical point as the origin for the enhanced γ\gamma in CeRu4_4Sn6_6 and suggest that this arises rather from correlated, residual in-gap states at the Fermi level. This work provides a fundamental route for future investigations into the phenomenon of narrow-gap formation in the strongly correlated class of systemComment: 11 pages, 13 figure

    Significance of Off-Center Rattling for Emerging Low-lying THz Modes in type-I Clathrates

    Full text link
    We show that the distinct differences of low-lying THz-frequency dynamics between type-I clathrates with on-center and off-center guest ions naturally follow from a theoretical model taking into account essential features of the dynamics of rattling guest ions. Our model analysis demonstrates the drastic change from the conventional dynamics shown by on-center systems to the peculiar dynamics of off-center systems in a unified manner. We claim that glass-like plateau thermal conductivities observed for off-center systems stem from the flattening of acoustic phonon dispersion in the regime |k|<|G|/4. The mechanism is applicable to other systems such as glasses or relaxers

    Quinone-mediated extracellular electron transfer processes in ex situ biomethanation reactors

    Get PDF
    Redox mediators are used in a wide diversity of systems including biological ones. We investigated the effect of adding an artificial quinone (2,7-AQDS) as external redox molecule to an anaerobic digester system dominated by hydrogenotrophic methanogens. When oxidized AQDS was present, the methanogens diverted electrons from H2 to reduce AQDS instead of CO2. The AQDS reduction process was accompanied by a temporary CH4 inhibition, which was re-established several days after the full reduction of AQDS to AH2QDS. The presence of AQDS furthermore resulted in a community shift from Methanobacterium as the dominant methanogen to a more diverse community of methanogens. Protein expression profiles showed a shift in cofactor preference of the adapted community, as a potential response mechanism to AQDS inhibition. AH2QDS was only used as electron donor to a limited extent. Stable isotope incorporation experiments here indicated that the acetogen Acetoanaerobium used AH2QDS to reduce CO2 into acetate.</p

    Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Get PDF
    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V

    Anomalous infrared spectra of hybridized phonons in type-I clathrate Ba8_8Ga16_{16}Ge30_{30}

    Full text link
    The optical conductivity spectra of the rattling phonons in the clathrate Ba8_8Ga16_{16}Ge30_{30} are investigated in detail by use of the terahertz time-domain spectroscopy. The experiment has revealed that the lowest-lying vibrational mode of a Ba(2)2+^{2+} ion consists of a sharp Lorentzian peak at 1.2 THz superimposed on a broad tail weighted in the lower frequency regime around 1.0 THz. With decreasing temperature, an unexpected linewidth broadening of the phonon peak is observed, together with monotonic softening of the phonon peak and the enhancement of the tail structure. These observed anomalies are discussed in terms of impurity scattering effects on the hybridized phonon system of rattling and acoustic phonons.Comment: Submitted to JPS

    Structural and optical studies of FeSb2 under high pressure

    Get PDF
    Nanostructured orthorhombic FeSb2 and an amorphous phase were formed by mechanical alloying starting from a mixture of high purity elemental Fe and Sb powders. The effects of high pressures on structural and optical properties were studied using X-ray diffraction (XRD) and Raman spectroscopy (RS). XRD patterns showed the presence of the orthorhombic FeSb2 phase up to the maximum pressure applied (28.2 GPa). The XRD patterns showed also an increase in the amount of the amorphous phase with increasing pressure up to 23.3 GPa. At 14.3 GPa, together with the former phases, a new phase was observed and indexed to a tetragonal FeSb2 phase, but its volume fraction is small at least up to 23.3 GPa. For the orthorhombic FeSb2 phase, the pressure dependence of the volume fitted to a Birch-Murnaghan equation of state gave a bulk modulus = 74.2 +- 3.0 GPa and its pressure derivative = 7.5 +- 0.6. RS measurements were performed from atmospheric pressure up to 45.2 GPa. For the orthorhombic FeSb2 phase, the Raman active mode was observed up to the maximum pressure applied, while the mode disappeared at 16.6 GPa. For pressures higher than 21 GPa, the Raman active mode of a tetragonal FeSb2 phase was observed, confirming ab initio calculations reported in the literature.Comment: 31 pages, 11 figures and 2 tables. Already submitted for publicatio

    Thermopower of the Correlated Narrow Gap Semiconductor FeSi and Comparison to RuSi

    Full text link
    Iron based narrow gap semiconductors such as FeSi, FeSb2, or FeGa3 have received a lot of attention because they exhibit a large thermopower, as well as striking similarities to heavy fermion Kondo insulators. Many proposals have been advanced, however, lacking quantitative methodologies applied to this problem, a consensus remained elusive to date. Here, we employ realistic many-body calculations to elucidate the impact of electronic correlation effects on FeSi. Our methodology accounts for all substantial anomalies observed in FeSi: the metallization, the lack of conservation of spectral weight in optical spectroscopy, and the Curie susceptibility. In particular we find a very good agreement for the anomalous thermoelectric power. Validated by this congruence with experiment, we further discuss a new physical picture of the microscopic nature of the insulator-to-metal crossover. Indeed, we find the suppression of the Seebeck coefficient to be driven by correlation induced incoherence. Finally, we compare FeSi to its iso-structural and iso-electronic homologue RuSi, and predict that partially substituted Fe(1-x)Ru(x)Si will exhibit an increased thermopower at intermediate temperatures.Comment: 14 pages. Proceedings of the Hvar 2011 Workshop on 'New materials for thermoelectric applications: theory and experiment

    Thermal Conductivity of Methane-Hydrate

    Full text link
    The thermal conductivity of the methane hydrate CH4 (5.75 H2O) was measured in the interval 2-140 K using the steady-state technique. The thermal conductivity corresponding to a homogeneous substance was calculated from the measured effective thermal conductivity obtained in the experiment. The temperature dependence of the thermal conductivity is typical for the thermal conductivity of amorphous solids. It is shown that after separation of the hydrate into ice and methane, at 240 K, the thermal conductivity of the ice exhibits a dependence typical of heavily deformed fine-grain polycrystal. The reason for the glass-like behavior in the thermal conductivity of clathrate compounds has been discussed. The experimental results can be interpreted within the phenomenological soft-potential model with two fitting parameters.Comment: 13 pages, 3 figure
    corecore