53 research outputs found

    IL-6 Receptor Inhibition by Tocilizumab Attenuated Expression of C5a Receptor 1 and 2 in Non-ST-Elevation Myocardial Infarction

    Get PDF
    Background: Elevated interleukin-6 (IL-6) and complement activation are associated with detrimental effects of inflammation in coronary artery disease (CAD). The complement anaphylatoxins C5a and C3a interact with their receptors; the highly inflammatory C5aR1, and the C5aR2 and C3aR. We evaluated the effect of the IL-6 receptor (IL-6R)-antagonist tocilizumab on the expression of the anaphylatoxin receptors in whole blood from non-ST-elevation myocardial infarction (NSTEMI) patients. Separately, anaphylatoxin receptor expression in peripheral blood mononuclear cells (PBMC) from patients with different entities of CAD was investigated.Materials and Methods: NSTEMI patients were randomized to one dose of tocilizumab (n = 28) or placebo (n = 32) and observed for 6 months. Whole blood samples drawn at inclusion, at day 2, 3 and after 6 months were used for mRNA isolation. Plasma was prepared for analysis of complement activation measured as sC5b-9 by ELISA. Furthermore, patients with different CAD entities comprising stable angina pectoris (SAP, n = 22), non-ST-elevation acute coronary syndrome (NSTE-ACS, n = 21) and ST-elevation myocardial infarction (STEMI, n = 20) were included. PBMC was isolated from blood samples obtained at admission to hospital and mRNA isolated. Anaphylatoxin-receptor-expression was analyzed with qPCR using mRNA from whole blood and PBMC, respectively.Results: Our main findings were (i) Tocilizumab decreased C5aR1 and C5aR2 mRNA expression significantly (p < 0.001) and substantially (>50%) at day 2 and 3, whereas C3aR expression was unaffected. (ii) Tocilizumab did not affect complement activation. (iii) In analyzes of different CAD entities, C5aR1 expression was significantly increased in all CAD subgroups compared to controls with the highest level in the STEMI patients (p < 0.001). For C5aR2 and C3aR the expression compared to controls were more moderate with increased expression of C5aR2 in the STEMI group (p < 0.05) and C3aR in the NSTE-ACS group (p < 0.05).Conclusion: Expression of C5aR1 and C5aR2 in whole blood was significantly attenuated by IL-6R-inhibition in NSTEMI patients. These receptors were significantly upregulated in PBMC CAD patients with particularly high levels of C5aR1 in STEMI patients

    Применение оксидно-рутениевых титановых анодов, модифицированных сурьмой для очистки воды

    Get PDF
    Rationale: Unlike conventional dendritic cells, plasmacytoid DCs (PDC) are poor in antigen presentation and critical for type 1 interferon response. Though proposed to be present in human atherosclerotic lesions, their role in atherosclerosis remains elusive. Objective: To investigate the role of PDC in atherosclerosis. Methods and Results: We show that PDC are scarcely present in human atherosclerotic lesions and almost absent in mouse plaques. Surprisingly, PDC depletion by 120G8 mAb administration was seen to promote plaque T-cell accumulation and exacerbate lesion development and progression in LDLr(-/-) mice. PDC depletion was accompanied by increased CD4(+) T-cell proliferation, interferon-gamma expression by splenic T cells, and plasma interferon-gamma levels. Lymphoid tissue PDC from atherosclerotic mice showed increased indoleamine 2,3-dioxygenase (IDO) expression and IDO blockage abrogated the PDC suppressive effect on T-cell proliferation. Conclusions: Our data reveal a protective role for PDC in atherosclerosis, possibly by dampening T-cell proliferation and activity in peripheral lymphoid tissue, rendering PDC an interesting target for future therapeutic interventions. (Circ Res. 2011;109:1387-1395.

    Fatty Acid Binding Protein 4 Is Associated with Carotid Atherosclerosis and Outcome in Patients with Acute Ischemic Stroke

    Get PDF
    BACKGROUND AND PURPOSE: Fatty acid binding protein 4 (FABP4) has been shown to play an important role in macrophage cholesterol trafficking and associated inflammation. To further elucidate the role of FABP4 in atherogenesis in humans, we examined the regulation of FABP4 in carotid atherosclerosis and ischemic stroke. METHODS: We examined plasma FABP4 levels in asymptomatic (n = 28) and symptomatic (n = 31) patients with carotid atherosclerosis, as well as in 202 subjects with acute ischemic stroke. In a subgroup of patients we also analysed the expression of FABP4 within the atherosclerotic lesion. In addition, we investigated the ability of different stimuli with relevance to atherosclerosis to regulate FABP4 expression in monocytes/macrophages. RESULTS: FABP4 levels were higher in patients with carotid atherosclerosis, both systemically and within the atherosclerotic lesion, with particular high mRNA levels in carotid plaques from patients with the most recent symptoms. Immunostaining of carotid plaques localized FABP4 to macrophages, while activated platelets and oxidized LDL were potent stimuli for FABP4 expression in monocytes/macrophages in vitro. When measured at the time of acute ischemic stroke, high plasma levels of FABP4 were significantly associated with total and cardiovascular mortality during follow-up, although we did not find that addition of FABP4 to the fully adjusted multivariate model had an effect on the prognostic discrimination for all-cause mortality as assessed by c-statistics. CONCLUSIONS: FABP4 is linked to atherogenesis, plaque instability and adverse outcome in patients with carotid atherosclerosis and acute ischemic stroke

    Lipoprotein (a) concentration is associated with plasma arachidonic acid in subjects with familial hypercholesterolemia

    Get PDF
    Elevated lipoprotein (a) (Lp[a]) is associated with cardiovascular disease (CVD) and is mainly genetically determined. Studies suggest a role of dietary fatty acids (FAs) in the regulation of Lp(a), however, no studies have investigated the association between plasma Lp(a) concentration and omega-6 FAs. We aimed to investigate whether plasma Lp(a) concentration was associated with dietary omega-6 FA intake, and plasma levels of arachidonic acid in subjects with familial hypercholesterolemia (FH). We included FH subjects with (n=68) and without (n=77) elevated Lp(a) defined as ≥75 nmol/L, and healthy subjects (n=14). Total fatty acid profile was analyzed by Gas Chromatography-Flame Ionization Detector analysis, and the daily intake of macronutrients (including the sum of omega-6 FAs: 18:2n-6, 20:2n-6, 20:3n-6 and 20:4n-6) were computed from completed food frequency questionnaires. FH subjects with elevated Lp(a) had higher plasma levels of arachidonic acid (AA) compared to FH subjects without elevated Lp(a) (P=0.03). Furthermore, both FH subjects with and without elevated Lp(a) had higher plasma levels of AA compared to controls (P<0.001). The multivariable analyses showed associations between dietary omega-6 FA intake and plasma levels of AA (P=0.02), and between plasma levels of Lp(a) and AA (P=0.006). Our data suggest a novel link between plasma Lp(a) concentration, dietary omega-6 FAs and plasma AA concentration, which may contribute to explain the small diet-induced increase in Lp(a) levels associated with lifestyle changes. Although the increase may not be clinically relevant, this association may be mechanistically interesting in understanding more of the role and regulation of Lp(a)

    Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice

    Get PDF
    Increasing evidence suggests that oxidative DNA damage accumulates in atherosclerosis. Recently, we showed that a genetic variant in the human DNA repair enzyme NEIL3 was associated with increased risk of myocardial infarction. Here, we explored the role of Neil3/NEIL3 in atherogenesis by both clinical and experimental approaches. Human carotid plaques revealed increased NEIL3 mRNA expression which significantly correlated with mRNA levels of the macrophage marker CD68. Apoe−/−Neil3−/− mice on high-fat diet showed accelerated plaque formation as compared to Apoe−/− mice, reflecting an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe−/−Neil3−/− mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage

    DNA glycosylase Neil3 regulates vascular smooth muscle cell biology during atherosclerosis development.

    Get PDF
    BACKGROUND AND AIMS: Atherogenesis involves a complex interaction between immune cells and lipids, processes greatly influenced by the vascular smooth muscle cell (VSMC) phenotype. The DNA glycosylase NEIL3 has previously been shown to have a role in atherogenesis, though whether this is due to its ability to repair DNA damage or to other non-canonical functions is not yet clear. Hereby, we investigate the role of NEIL3 in atherogenesis, specifically in VSMC phenotypic modulation, which is critical in plaque formation and stability. METHODS: Chow diet-fed atherosclerosis-prone Apoe-/- mice deficient in Neil3, and NEIL3-abrogated human primary aortic VSMCs were characterized by qPCR, and immunohistochemical and enzymatic-based assays; moreover, single-cell RNA sequencing, mRNA sequencing, and proteomics were used to map the molecular effects of Neil3/NEIL3 deficiency in the aortic VSMC phenotype. Furthermore, BrdU-based proliferation assays and Western blot were performed to elucidate the involvement of the Akt signaling pathway in the transdifferentiation of aortic VSMCs lacking Neil3/NEIL3. RESULTS: We show that Neil3 deficiency increases atherosclerotic plaque development without affecting systemic lipids. This observation was associated with a shift in VSMC phenotype towards a proliferating, lipid-accumulating and secretory macrophage-like cell phenotype, without changes in DNA damage. VSMC transdifferentiation in Neil3-deficient mice encompassed increased activity of the Akt signaling pathway, supported by cell experiments showing Akt-dependent proliferation in NEIL3-abrogated human primary aortic VSMCs. CONCLUSIONS: Our findings show that Neil3 deficiency promotes atherosclerosis development through non-canonical mechanisms affecting VSMC phenotype involving activation of the Akt signaling pathway

    Prediction of underlying atrial fibrillation in patients with a cryptogenic stroke: results from the NOR-FIB Study

    Get PDF
    Background - Atrial fibrillation (AF) detection and treatment are key elements to reduce recurrence risk in cryptogenic stroke (CS) with underlying arrhythmia. The purpose of the present study was to assess the predictors of AF in CS and the utility of existing AF-predicting scores in The Nordic Atrial Fibrillation and Stroke (NOR-FIB) Study. Method - The NOR-FIB study was an international prospective observational multicenter study designed to detect and quantify AF in CS and cryptogenic transient ischaemic attack (TIA) patients monitored by the insertable cardiac monitor (ICM), and to identify AF-predicting biomarkers. The utility of the following AF-predicting scores was tested: AS5F, Brown ESUS-AF, CHA2DS2-VASc, CHASE-LESS, HATCH, HAVOC, STAF and SURF. Results - In univariate analyses increasing age, hypertension, left ventricle hypertrophy, dyslipidaemia, antiarrhythmic drugs usage, valvular heart disease, and neuroimaging findings of stroke due to intracranial vessel occlusions and previous ischemic lesions were associated with a higher likelihood of detected AF. In multivariate analysis, age was the only independent predictor of AF. All the AF-predicting scores showed significantly higher score levels for AF than non-AF patients. The STAF and the SURF scores provided the highest sensitivity and negative predictive values, while the AS5F and SURF reached an area under the receiver operating curve (AUC) > 0.7. Conclusion - Clinical risk scores may guide a personalized evaluation approach in CS patients. Increasing awareness of the usage of available AF-predicting scores may optimize the arrhythmia detection pathway in stroke units

    The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide

    Get PDF
    Background: A plant-based diet protects against chronic oxidative stress-related diseases. Dietary plants contain variable chemical families and amounts of antioxidants. It has been hypothesized that plant antioxidants may contribute to the beneficial health effects of dietary plants. Our objective was to develop a comprehensive food database consisting of the total antioxidant content of typical foods as well as other dietary items such as traditional medicine plants, herbs and spices and dietary supplements. This database is intended for use in a wide range of nutritional research, from in vitro and cell and animal studies, to clinical trials and nutritional epidemiological studies. Methods: We procured samples from countries worldwide and assayed the samples for their total antioxidant content using a modified version of the FRAP assay. Results and sample information (such as country of origin, product and/or brand name) were registered for each individual food sample and constitute the Antioxidant Food Table. Results: The results demonstrate that there are several thousand-fold differences in antioxidant content of foods. Spices, herbs and supplements include the most antioxidant rich products in our study, some exceptionally high. Berries, fruits, nuts, chocolate, vegetables and products thereof constitute common foods and beverages with high antioxidant values. Conclusions: This database is to our best knowledge the most comprehensive Antioxidant Food Database published and it shows that plant-based foods introduce significantly more antioxidants into human diet than non-plant foods. Because of the large variations observed between otherwise comparable food samples the study emphasizes the importance of using a comprehensive database combined with a detailed system for food registration in clinical and epidemiological studies. The present antioxidant database is therefore an essential research tool to further elucidate the potential health effects of phytochemical antioxidants in diet

    Lack of Chemokine Signaling through CXCR5 Causes Increased Mortality, Ventricular Dilatation and Deranged Matrix during Cardiac Pressure Overload

    Get PDF
    RATIONALE: Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF), but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. OBJECTIVE: We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF. METHODS AND RESULTS: Mice harboring a systemic knockout of the CXCR5 (CXCR5(-/-)) displayed increased mortality during a follow-up of 80 days after aortic banding (AB). Following three weeks of AB, CXCR5(-/-) developed significant left ventricular (LV) dilatation compared to wild type (WT) mice. Microarray analysis revealed altered expression of several small leucine-rich proteoglycans (SLRPs) that bind to collagen and modulate fibril assembly. Protein levels of fibromodulin, decorin and lumican (all SLRPs) were significantly reduced in AB CXCR5(-/-) compared to AB WT mice. Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of proteoglycans in AB CXCR5(-/-) mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following LV assist device treatment. CONCLUSIONS: Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly
    corecore