12,295 research outputs found
Graphite ionization vacuum gauge
Triode gauge with electron source, electron collector, and positive ion collector made from either graphite or carbon material extends low-pressure ranges of existing gauges by changing only materials used in construction. Advantages of graphite gauge stem from physical properties of graphite (or carbon)
A digital imaging photometry system for cometary data acquisition
This report describes a digital imaging photometry system developed in the Space Science Laboratory at the Marshall Space Flight center. The photometric system used for cometary data acquisition is based on an intensified secondary electron conduction (ISEC) vidicon coupled to a versatile data acquisition system which allows real-time interactive operation. Field tests on the Orion and Rosette nebulas indicate a limiting magnitude of approximately m sub v = 14 over the 40 arcmin field-of-view. Observations were conducted of Comet Giacobini-Zinner in August 1985. The resulting data are discussed in relation to the capabilities of the digital analysis system. The development program concluded on August 31, 1985
Topologically Alice Strings and Monopoles
Symmetry breaking can produce ``Alice'' strings, which alter scattered
charges and carry monopole number and charge when twisted into loops. Alice
behavior arises algebraically, when strings obstruct unbroken symmetries -- a
fragile criterion. We give a topological criterion, compelling Alice behavior
or deforming it away. Our criterion, that \pi_o(H) acts nontrivially on
\pi_1(H), links topologically Alice strings to topological monopoles. We twist
topologically Alice loops to form monopoles. We show that Alice strings of
condensed matter systems (nematic liquid crystals, helium 3A, and related
non-chiral Bose condensates and amorphous chiral superconductors) are
topologically Alice, and support fundamental monopole charge when twisted into
loops. Thus they might be observed indirectly, not as strings, but as loop-like
point defects. We describe other models, showing Alice strings failing our
topological criterion; and twisted Alice loops supporting deposited, but not
fundamental, monopole number.Comment: 2 figures; this paper consolidates preprints hep-th/0304161 and
hep-th/0304162, to appear in Phys. Rev.
Integrated assurance assessment of a reconfigurable digital flight control system
The integrated application of reliability, failure effects and system simulator methods in establishing the airworthiness of a flight critical digital flight control system (DFCS) is demonstrated. The emphasis was on the mutual reinforcement of the methods in demonstrating the system safety
Recommended from our members
In vivo and in vitro assessment of mirtazapine pharmacokinetics in cats with liver disease.
BackgroundLiver disease (LD) prolongs mirtazapine half-life in humans, but it is unknown if this occurs in cats with LD and healthy cats.Hypothesis/objectivesTo determine pharmacokinetics of administered orally mirtazapine in vivo and in vitro (liver microsomes) in cats with LD and healthy cats.AnimalsEleven LD and 11 age-matched control cats.MethodsCase-control study. Serum was obtained 1 and 4 hours (22 cats) and 24 hours (14 cats) after oral administration of 1.88 mg mirtazapine. Mirtazapine concentrations were measured by liquid chromatography with tandem mass spectrometry. Drug exposure and half-life were predicted using limited sampling modeling and estimated using noncompartmental methods. in vitro mirtazapine pharmacokinetics were assessed using liver microsomes from 3 LD cats and 4 cats without LD.ResultsThere was a significant difference in time to maximum serum concentration between LD cats and control cats (median [range]: 4 [1-4] hours versus 1 [1-4] hours; P = .03). The calculated half-life of LD cats was significantly prolonged compared to controls (median [range]: 13.8 [7.9-61.4] hours versus 7.4 [6.7-9.1] hours; P < .002). Mirtazapine half-life was correlated with ALT (P = .002; r = .76), ALP (P < .0001; r = .89), and total bilirubin (P = .0008; r = .81). The rate of loss of mirtazapine was significantly different between microsomes of LD cats (-0.0022 min-1 , CI: -0.0050 to 0.00054 min-1 ) and cats without LD (0.01849 min-1 , CI: -0.025 to -0.012 min-1 ; P = .002).Conclusions and clinical importanceCats with LD might require less frequent administration of mirtazapine than normal cats
Thermomechanical Fatigue Durability of T650-35/PMR-15 Sheet Molding Compound
Although polyimide based composites have been used for many years in a wide variety of elevated temperature applications, very little work has been done to examine the durability and damage behavior under more prototypical thermomechanical fatigue (TMF) loadings. Synergistic effects resulting from simultaneous temperature and load cycling can potentially lead to enhanced, if not unique, damage modes and contribute to a number of nonlinear deformation responses. The goal of this research was to examine the effects of a TMF loading spectrum, representative of a gas turbine engine compressor application, on a polyimide sheet molding compound (SMC). High performance SMCs present alternatives to prepreg forms with great potential for low cost component production through less labor intensive, more easily automated manufacturing. To examine the issues involved with TMF, a detailed experimental investigation was conducted to characterize the durability of a T650-35/PMR-15 SMC subjected to TMF mission cycle loadings. Fatigue damage progression was tracked through macroscopic deformation and elastic stiffness. Additional properties, such as the glass transition temperature (T(sub g) and dynamic mechanical properties were examined. The fiber distribution orientation was also characterized through a detailed quantitative image analysis. Damage tolerance was quantified on the basis of residual static tensile properties after a prescribed number of TMF missions. Detailed microstructural examinations were conducted using optical and scanning electron microscopy to characterize the local damage. The imposed baseline TMF missions had only a modest impact on inducing fatigue damage with no statistically significant degradation occurring in the measured macroscopic properties. Microstructural damage was, however, observed subsequent to 100 h of TMF cycling which consisted primarily of fiber debonding and transverse cracking local to predominantly transverse fiber bundles. The TMF loadings did introduce creep related effects (strain accumulation) which led to rupture in some of the more aggressive stress scenarios examined. In some cases this creep behavior occurred at temperatures in excess of 150 C below commonly cited values for T(sub g). Thermomechanical exploratory creep tests revealed that the SMC was subject to time dependent deformation at stress/temperature thresholds of 150 MPa/230 C and 170 MPa/180 C
Recommended from our members
Mapping lung cancer epithelial-mesenchymal transition states and trajectories with single-cell resolution.
Elucidating the spectrum of epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) states in clinical samples promises insights on cancer progression and drug resistance. Using mass cytometry time-course analysis, we resolve lung cancer EMT states through TGFβ-treatment and identify, through TGFβ-withdrawal, a distinct MET state. We demonstrate significant differences between EMT and MET trajectories using a computational tool (TRACER) for reconstructing trajectories between cell states. In addition, we construct a lung cancer reference map of EMT and MET states referred to as the EMT-MET PHENOtypic STAte MaP (PHENOSTAMP). Using a neural net algorithm, we project clinical samples onto the EMT-MET PHENOSTAMP to characterize their phenotypic profile with single-cell resolution in terms of our in vitro EMT-MET analysis. In summary, we provide a framework to phenotypically characterize clinical samples in the context of in vitro EMT-MET findings which could help assess clinical relevance of EMT in cancer in future studies
Perfectionism, achievement motives, and attribution of success and failure in female soccer players
While some researchers have identified adaptive perfectionism as a key characteristic to achieving elite performance in sport, others see perfectionism as a maladaptive characteristic that undermines, rather than helps, athletic performance. Arguing that perfectionism in sport contains both adaptive and maladaptive facets, the present article presents a study of N 5 74 female soccer players investigating how two facets of perfectionism—perfectionistic strivings and negative reactions to imperfection (Stoeber, Otto, Pescheck, Becker, & Stoll, 2007)—are related to achievement motives and attributions of success and failure. Results show that striving for perfection was related to hope of success and self-serving attributions (internal attribution of success). Moreover, once overlap between the two facets of perfectionism was controlled for, striving for perfection was inversely related to fear of failure and self-depreciating attributions (internal attribution of failure). In contrast,
negative reactions to imperfection were positively related to fear of failure and self-depreciating attributions (external attribution of success) and inversely related to self-serving attributions (internal attribution of success and external attribution of failure). It is concluded that striving for perfection in sport is associated with an adaptive pattern of positive motivational orientations and self-serving attributions of success and failure, which
may help athletic performance. In contrast, negative reactions to imperfection are associated with a maladaptive
pattern of negative motivational orientations and self-depreciating attributions, which is likely to undermine athletic performance. Consequently, perfectionism in sport may be adaptive in those athletes who strive for perfection, but can control their negative reactions when performance is less than perfect
Sources of UHECRs in view of the TUS and JEM-EUSO experiments
The origin of ultra-high-energy cosmic rays (UHECRs) is one of the most
intriguing problems of modern cosmic ray physics. We briefly review the main
astrophysical models of their origin and the forthcoming orbital experiments
TUS and JEM-EUSO, and discuss how the new data can help one solve the
long-standing puzzle.Comment: 4 pages; prepared for ECRS-2012 (http://ecrs2012.sinp.msu.ru/); v2: a
reference adde
- …