991 research outputs found

    Spatial standardization of taxon occurrence data—a call to action

    Get PDF
    The fossil record is spatiotemporally heterogeneous: taxon occurrence data have patchy spatial distributions, and this patchiness varies through time. Large-scale quantitative paleobiology studies that fail to account for heterogeneous sampling coverage will generate uninformative inferences at best and confidently draw wrong conclusions at worst. Explicitly spatial methods of standardization are necessary for analyses of large-scale fossil datasets, because nonspatial sample standardization, such as diversity rarefaction, is insufficient to reduce the signal of varying spatial coverage through time or between environments and clades. Spatial standardization should control both geographic area and dispersion (spread) of fossil localities. In addition to standardizing the spatial distribution of data, other factors may be standardized, including environmental heterogeneity or the number of publications or field collecting units that report taxon occurrences. Using a case study of published global Paleobiology Database occurrences, we demonstrate strong signals of sampling; without spatial standardization, these sampling signatures could be misattributed to biological processes. We discuss practical issues of implementing spatial standardization via subsampling and present the new R package divvy to improve the accessibility of spatial analysis. The software provides three spatial subsampling approaches, as well as related tools to quantify spatial coverage. After reviewing the theory, practice, and history of equalizing spatial coverage between data comparison groups, we outline priority areas to improve related data collection, analysis, and reporting practices in paleobiology

    Mammalian forelimb evolution is driven by uneven proximal-to-distal morphological diversity

    Get PDF
    Vertebrate limb morphology often reflects the environment due to variation in locomotor requirements. However, proximal and distal limb segments may evolve differently from one another, reflecting an anatomical gradient of functional specialization that has been suggested to be impacted by the timing of development. Here, we explore whether the temporal sequence of bone condensation predicts variation in the capacity of evolution to generate morphological diversity in proximal and distal forelimb segments across more than 600 species of mammals. Distal elements not only exhibit greater shape diversity, but also show stronger within-element integration and, on average, faster evolutionary responses than intermediate and upper limb segments. Results are consistent with the hypothesis that late developing distal bones display greater morphological variation than more proximal limb elements. However, the higher integration observed within the autopod deviates from such developmental predictions, suggesting that functional specialization plays an important role in driving within-element covariation. Proximal and distal limb segments also show different macroevolutionary patterns, albeit not showing a perfect proximo-distal gradient. The high disparity of the mammalian autopod, reported here, is consistent with the higher potential of development to generate variation in more distal limb structures, as well as functional specialization of the distal elements

    On the generalized Davenport constant and the Noether number

    Full text link
    Known results on the generalized Davenport constant related to zero-sum sequences over a finite abelian group are extended to the generalized Noether number related to the rings of polynomial invariants of an arbitrary finite group. An improved general upper bound is given on the degrees of polynomial invariants of a non-cyclic finite group which cut out the zero vector.Comment: 14 page

    Middle Jurassic fossils document an early stage in salamander evolution

    Get PDF
    Salamanders are an important group of living amphibians and model organisms for understanding locomotion, development, regeneration, feeding, and toxicity in tetrapods. However, their origin and early radiation remain poorly understood, with early fossil stem-salamanders so far represented by larval or incompletely known taxa. This poor record also limits understanding of the origin of Lissamphibia (i.e., frogs, salamanders, and caecilians). We report fossils from the Middle Jurassic of Scotland representing almost the entire skeleton of the enigmatic stem-salamander Marmorerpeton. We use computed tomography to visualize high-resolution three-dimensional anatomy, describing morphologies that were poorly characterized in early salamanders, including the braincase, scapulocoracoid, and lower jaw. We use these data in the context of a phylogenetic analysis intended to resolve the relationships of early and stem-salamanders, including representation of important outgroups alongside data from high-resolution imaging of extant species. Marmorerpeton is united with Karaurus, Kokartus, and others from the Middle Jurassic–Lower Cretaceous of Asia, providing evidence for an early radiation of robustly built neotenous stem-salamanders. These taxa display morphological specializations similar to the extant cryptobranchid “giant” salamanders. Our analysis also demonstrates stem-group affinities for a larger sample of Jurassic species than previously recognized, highlighting an unappreciated diversity of stem-salamanders and cautioning against the use of single species (e.g., Karaurus) as exemplars for stem-salamander anatomy. These phylogenetic findings, combined with knowledge of the near-complete skeletal anatomy of Mamorerpeton, advance our understanding of evolutionary changes on the salamander stem-lineage and provide important data on early salamanders and the origins of Batrachia and Lissamphibia

    Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer

    Get PDF
    Plasmon-enhanced optical trapping is being actively studied to provide efficient manipulation of nanometre-sized objects. However, a long-standing issue with previously proposed solutions is how to controllably load the trap on-demand without relying on Brownian diffusion. Here, we show that the photo-induced heating of a nanoantenna in conjunction with an applied a.c. electric field can initiate rapid microscale fluid motion and particle transport with a velocity exceeding 10 μm s -1 , which is over two orders of magnitude faster than previously predicted. Our electrothermoplasmonic device enables on-demand long-range and rapid delivery of single nano-objects to specific plasmonic nanoantennas, where they can be trapped and even locked in place. We also present a physical model that elucidates the role of both heat-induced fluidic motion and plasmonic field enhancement in the plasmon-assisted optical trapping process. Finally, by applying a d.c. field or low-frequency a.c. field (below 10 Hz) while the particle is held in the trap by the gradient force, the trapped nano-objects can be immobilized into plasmonic hotspots, thereby providing the potential for effective low-power nanomanufacturing on-chip

    No reserve in isokinetic cycling power at intolerance during ramp incremental exercise in endurance-trained men.

    Get PDF
    During whole-body exercise in health, maximal oxygen uptake (V̇O2max) is typically attained at or immediately prior to the limit of tolerance (LoT). At the V̇O2max and LoT of incremental exercise, a fundamental, but unresolved, question is whether maximal evocable power can increase above the task requirement, i.e. whether there is a "power reserve" at the LoT. Using an instantaneous switch from cadence-independent to isokinetic cycle ergometry, we determined maximal evocable power at the limit of ramp-incremental exercise. We hypothesized that in endurance-trained men at LoT, maximal (4s) isokinetic power would not differ from power required by the task. Baseline isokinetic power at 80rpm (PISO; measured at the pedals) and summed integrated EMG from 5 leg muscles (∑iEMG) were measured in 12 endurance-trained men (V̇O2max=4.2±1.0 l•min(-1)). Participants then completed a ramp-incremental exercise test (20-25W•min(-1)), with instantaneous measurement of PISO and ∑iEMG at the LoT. PISO decreased from 788±103W at baseline to 391±72W at LoT, which was not different from the required ramp-incremental flywheel power (352±58W; p>0.05). At LoT, the relative reduction in PISO was greater than the relative reduction in the isokinetic ∑iEMG (50±9 vs. 63±10% of baseline; p<0.05). During maximal ramp incremental exercise in endurance-trained men, maximum voluntary power is not different from the power required by the task, and is consequent to both central and peripheral limitations in evocable power. The absence of a power reserve suggests both the perceptual and physiological limits of maximum voluntary power production are not widely dissociated at LoT in this population

    Prevalence and dynamics of ribosomal DNA micro-heterogeneity are linked to population history in two contrasting yeast species

    Get PDF
    Despite the considerable number and taxonomic breadth of past and current genome sequencing projects, many of which necessarily encompass the ribosomal DNA, detailed information on the prevalence and evolutionary significance of sequence variation in this ubiquitous genomic region are severely lacking. Here, we attempt to address this issue in two closely related yet contrasting yeast species, the baker's yeast Saccharomyces cerevisiae and the wild yeast Saccharomyces paradoxus. By drawing on existing datasets from the Saccharomyces Genome Resequencing Project, we identify a rich seam of ribosomal DNA sequence variation, characterising 1,068 and 970 polymorphisms in 34 S. cerevisiae and 26 S. paradoxus strains respectively. We discover the two species sets exhibit distinct mutational profiles. Furthermore, we show for the first time that unresolved rDNA sequence variation resulting from imperfect concerted evolution of the ribosomal DNA region follows a U-shaped allele frequency distribution in each species, similar to loci that evolve under non-concerted mechanisms but arising through rather different evolutionary processes. Finally, we link differences between the shapes of these allele frequency distributions to the two species' contrasting population histories

    FONZIE: An optimized pipeline for minisatellite marker discovery and primer design from large sequence data sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Micro-and minisatellites are among the most powerful genetic markers known to date. They have been used as tools for a large number of applications ranging from gene mapping to phylogenetic studies and isolate typing. However, identifying micro-and minisatellite markers on large sequence data sets is often a laborious process.</p> <p>Results</p> <p>FONZIE was designed to successively 1) perform a search for markers via the external software Tandem Repeat Finder, 2) exclude user-defined specific genomic regions, 3) screen for the size and the percent matches of each relevant marker found by Tandem Repeat Finder, 4) evaluate marker specificity (i.e., occurrence of the marker as a single copy in the genome) using BLAST2.0, 5) design minisatellite primer pairs via the external software Primer3, and 6) check the specificity of each final PCR product by BLAST. A final file returns to users all the results required to amplify markers. A biological validation of the approach was performed using the whole genome sequence of the phytopathogenic fungus <it>Leptosphaeria maculans</it>, showing that more than 90% of the minisatellite primer pairs generated by the pipeline amplified a PCR product, 44.8% of which showed agarose-gel resolvable polymorphism between isolates. Segregation analyses confirmed that the polymorphic minisatellites corresponded to single-locus markers.</p> <p>Conclusion</p> <p>FONZIE is a stand-alone and user-friendly application developed to minimize tedious manual operations, reduce errors, and speed up the search for efficient minisatellite and microsatellite markers departing from whole-genome sequence data. This pipeline facilitates the integration of data and provides a set of specific primer sequences for PCR amplification of single-locus markers. FONZIE is freely downloadable at: <url>http://www.versailles-grignon.inra.fr/bioger/equipes/leptosphaeria_maculans/outils_d_analyses/fonzie</url></p

    Autonomy and Its Role in English Language Learning: Practice and Research

    Get PDF
    This chapter picks up discussion in the previous edition of this handbook of how the concept of autonomy has influenced language education and applied linguistics in recent years. It begins by discussing the philosophical and practical origins of learner autonomy in language education and particularly in English language teaching and how these have developed over the last 10 years. Key practical initiatives and research findings are reviewed to illuminate how autonomy has been interpreted in relation to learners, teachers, and the learning situation; how it has been linked or contrasted with other constructs; and how fostering autonomy has been seen as a part of pedagogy. Recent developments from the earlier edition are discussed regarding metacognition and, in particular, various contextual dimensions of learner autonomy. Other emerging topics are also reviewed, including learner autonomy in the world of digital/social media, learner autonomy in curriculum design and published materials, and the relation of learner autonomy to plurilingual perspectives. The chapter discusses issues in each of these areas, potential strategies for developing autonomy and effective learning, and possible future directions for research and practice

    Open reduction and internal fixation compared to closed reduction and external fixation in distal radial fractures: A randomized study of 50 patients

    Get PDF
    Background and purpose In unstable distal radial fractures that are impossible to reduce or to maintain in reduced position, the treatment of choice is operation. The type of operation and the choice of implant, however, is a matter of discussion. Our aim was to investigate whether open reduction and internal fixation would produce a better result than traditional external fixation
    corecore