29 research outputs found

    OntoVIP: An ontology for the annotation of object models used for medical image simulation.

    Get PDF
    International audienceThis paper describes the creation of a comprehensive conceptualization of object models used in medical image simulation, suitable for major imaging modalities and simulators. The goal is to create an application ontology that can be used to annotate the models in a repository integrated in the Virtual Imaging Platform (VIP), to facilitate their sharing and reuse. Annotations make the anatomical, physiological and pathophysiological content of the object models explicit. In such an interdisciplinary context we chose to rely on a common integration framework provided by a foundational ontology, that facilitates the consistent integration of the various modules extracted from several existing ontologies, i.e. FMA, PATO, MPATH, RadLex and ChEBI. Emphasis is put on methodology for achieving this extraction and integration. The most salient aspects of the ontology are presented, especially the organization in model layers, as well as its use to browse and query the model repository

    A virtual imaging platform for multi-modality medical image simulation.

    Get PDF
    International audienceThis paper presents the Virtual Imaging Platform (VIP), a platform accessible at http://vip.creatis.insa-lyon.fr to facilitate the sharing of object models and medical image simulators, and to provide access to distributed computing and storage resources. A complete overview is presented, describing the ontologies designed to share models in a common repository, the workflow template used to integrate simulators, and the tools and strategies used to exploit computing and storage resources. Simulation results obtained in four image modalities and with different models show that VIP is versatile and robust enough to support large simulations. The platform currently has 200 registered users who consumed 33 years of CPU time in 2011

    Quantification de nanoparticules à base d oxyde de fer pour l IRM moléculaire (approche basée sur la déconvolution du défaut de champ magnétique)

    No full text
    En Imagerie par Résonance Magnétique (IRM), il existe deux types d agents de contraste : paramagnétiques, dits " positifs " et superparamagnétiques dits " négatifs " ou encore de " susceptibilité magnétique ". Les agents de contraste sont de plus en plus utilisés en IRM pour de nombreuses applications médicales (suivi cellulaire, marquage de l inflammation, ciblage thérapeutique...). Ils sont devenus un outil précieux pour l aide au diagnostic. Localiser et quantifier les agents de contraste est donc devenu un enjeu majeur de l IRM dite moléculaire. Dans ce travail de thèse, nous nous intéressons aux agents de contraste superparamagnétiques de type USPIO (Ultrasmall SuperParamagnetic Iron Oxyde particles). Nous proposons une quantification basée sur l estimation de la susceptibilité magnétique. Cette démarche repose sur la déconvolution de la carte de défaut de champ magnétique induit par ces agents de contraste à travers la modification locale de la susceptibilité magnétique. Nous définissons la méthode SYMDEF qui implante un modèle déconvolutif régularisé par un filtre de type CLS (Constrained Least Squares). Cette approche redéfinit ainsi la quantification de ce type d agent de contraste dans un cadre de restauration d images. Nous présentons une analyse de la méthode SYMDEF en fonction des différents paramètres qui la régissent ainsi qu une étude sur l impact de l écart entre un défaut de champ idéal et le modèle de défaut intégré à la méthode SYMDEF. La méthode SYMDEF est évaluée sur des cartes de défaut de champ magnétique de synthèse. Ces cartes ont été obtenues : en calculant théoriquement le défaut de champ à partir de modèles anatomiques et pathologiques que nous avons conçus ; à partir de la simulation d images IRM de ces modèles en calculant soit la carte de gradient de susceptibilité (SGM), soit la carte de différence de phase. La méthode SYMDEF a également été testée sur des images IRM réelles in vitro et in vivo d agrégats d USPIOs. Les résultats obtenus mettent en évidence la faisabilité d une telle méthode de quantification, sa robustesse notamment face au bruit ainsi que la qualité de la quantification de la susceptibilité magnétique induite par les agents de contraste dès lors que l information de défaut de champ est donnée avec une bonne résolution spatiale.In magnetic resonance imaging (MRI), there are two types of contrast agents: paramagnetic, "positive" and superparamagnetic "negative" or the "magnetic susceptibility". Contrast agents are increasingly used in MRI for many medical applications (monitoring cell, marking inflammation, therapeutic targeting ...). They have become a valuable tool to aid diagnosis. Locate and quantify the contrast agents have become a major issue of the so-called molecular MRI. In this thesis, we focus on superparamagnetic contrast agents like USPIO (Ultrasmall Iron Oxide particles SuperParamagnetic). We propose quantification based on the estimation of the magnetic susceptibility. This approach is based on the deconvolution of the map of non-magnetic field induced by the contrast agent through the local change of magnetic susceptibility. We define the method that implements a model SYMDEF déconvolutif regulated by a filter type CLS (Constrained Least Squares). This approach redefines and quantification of this type of contrast agent within a framework of image restoration. We present an analysis of the method SYMDEF according to various parameters that govern it and a study on the impact of the difference between a lack of ideal field and model integrated with the default method SYMDEF. The method is evaluated on SYMDEF card default magnetic field synthesis. These maps were obtained: by calculating the defect field theory from anatomical and pathological models that we have designed, from the simulation of MR images of these models is by calculating the susceptibility gradient map (SGM) is the map of phase difference. SYMDEF method was also tested on real MR images in vitro and in vivo aggregates of USPIOs. The results demonstrate the feasibility of this method of quantification, including its robustness against noise and the quality of the quantification of the magnetic susceptibility induced by contrast agents as soon as the fault information of field given with good spatial resolution.VILLEURBANNE-DOC'INSA LYON (692662301) / SudocSudocFranceF

    Unsupervised spatiotemporal video clustering a versatile mean-shift formulation robust to total object occlusions

    No full text
    International audienceIn this paper, we propose a mean-shift formulation allowing spatiotemporal clustering of video streams, and possibly extensible to other multivariate evolving data. Our formulation enables causal or omniscient filtering of spatiotemporal data, which is robust to total object occlusions. It embeds a new clustering algorithm within the filtering procedure that will group samples and reduce their number over the iterations. Based on our formulation, we express similar approaches and assess their robustness on real video sequences

    Locally Regularized Smoothing B-Snake

    No full text
    International audienceWe propose a locally regularized snake based on smoothing-spline filtering. The proposed algorithm associates a regularization process with a force equilibrium scheme leading the snake's deformation. In this algorithm, the regularization is implemented with a smoothing of the deformation forces. The regularization level is controlled through a unique parameter that can vary along the contour. It provides a locally regularized smoothing B-snake that offers a powerful framework to introduce prior knowledge. We illustrate the snake behavior on synthetic and real images, with global and local regularization

    Contributions au filtrage Mean Shift à la segmentation (Application à l ischémie cérébrale en imagerie IRM)

    No full text
    De plus en plus souvent, les études médicales utilisent simultanément de multiples modalités d'acquisition d'image, produisant ainsi des données multidimensionnelles comportant beaucoup d'information supplémentaire dont l'interprétation et le traitement deviennent délicat. Par exemple, les études sur l'ischémie cérébrale se basant sur la combinaison de plusieurs images IRM, provenant de différentes séquences d'acquisition, pour prédire l'évolution de la zone nécrosée, donnent de bien meilleurs résultats que celles basées sur une seule image. Ces approches nécessitent cependant l'utilisation d'algorithmes plus complexes pour réaliser les opérations de filtrage, segmentation et de clustering. Une approche robuste pour répondre à ces problèmes de traitements de données multidimensionnelles est le Mean Shift qui est basé sur l'analyse de l'espace des caractéristiques et l'estimation non-paramétrique par noyau de la densité de probabilité. Dans cette thèse, nous étudions les paramètres qui influencent les résultats du Mean Shift et nous cherchons à optimiser leur choix. Nous examinons notamment l'effet du bruit et du flou dans l'espace des caractéristiques et comment le Mean Shift doit être paramétrés pour être optimal pour le débruitage et la réduction du flou. Le grand succès du Mean Shift est principalement du au réglage intuitif de ces paramètres de la méthode. Ils représentent l'échelle à laquelle le Mean Shift analyse chacune des caractéristiques. En se basant sur la méthode du Plug In (PI) monodimensionnel, fréquemment utilisé pour le filtrage Mean Shift et permettant, dans le cadre de l'estimation non-paramétrique par noyau, d'approximer le paramètre d'échelle optimal, nous proposons l'utilisation du PI multidimensionnel pour le filtrage Mean Shift. Nous évaluons l'intérêt des matrices d'échelle diagonales et pleines calculées à partir des règles du PI sur des images de synthèses et naturelles. Enfin, nous proposons une méthode de segmentation automatique et volumique combinant le filtrage Mean Shift et la croissance de région ainsi qu'une optimisation basée sur les cartes de probabilité. Cette approche est d'abord étudiée sur des images IRM synthétisées. Des tests sur des données réelles issues d'études sur l'ischémie cérébrale chez le rats et l'humain sont aussi conduits pour déterminer l'efficacité de l'approche à prédire l'évolution de la zone de pénombre plusieurs jours après l'accident vasculaire et ce, à partir des IRM réalisées peu de temps après la survenue de cet accident. Par rapport aux segmentations manuelles réalisées des experts médicaux plusieurs jours après l'accident, les résultats obtenus par notre approche sont mitigés. Alors qu'une segmentation parfaite conduirait à un coefficient DICE de 1, le coefficient est de 0.8 pour l'étude chez le rat et de 0.53 pour l'étude sur l'homme. Toujours en utilisant le coefficient DICE, nous déterminons la combinaison de d'images IRM conduisant à la meilleure prédiction.Medical studies increasingly use multi-modality imaging, producing multidimensional data that bring additional information that are also challenging to process and interpret. As an example, for predicting salvageable tissue, ischemic studies in which combinations of different multiple MRI imaging modalities (DWI, PWI) are used produced more conclusive results than studies made using a single modality. However, the multi-modality approach necessitates the use of more advanced algorithms to perform otherwise regular image processing tasks such as filtering, segmentation and clustering. A robust method for addressing the problems associated with processing data obtained from multi-modality imaging is Mean Shift which is based on feature space analysis and on non-parametric kernel density estimation and can be used for multi-dimensional filtering, segmentation and clustering. In this thesis, we sought to optimize the mean shift process by analyzing the factors that influence it and optimizing its parameters. We examine the effect of noise in processing the feature space and how Mean Shift can be tuned for optimal de-noising and also to reduce blurring. The large success of Mean Shift is mainly due to the intuitive tuning of bandwidth parameters which describe the scale at which features are analyzed. Based on univariate Plug-In (PI) bandwidth selectors of kernel density estimation, we propose the bandwidth matrix estimation method based on multi-variate PI for Mean Shift filtering. We study the interest of using diagonal and full bandwidth matrix with experiment on synthesized and natural images. We propose a new and automatic volume-based segmentation framework which combines Mean Shift filtering and Region Growing segmentation as well as Probability Map optimization. The framework is developed using synthesized MRI images as test data and yielded a perfect segmentation with DICE similarity measurement values reaching the highest value of 1. Testing is then extended to real MRI data obtained from animals and patients with the aim of predicting the evolution of the ischemic penumbra several days following the onset of ischemia using only information obtained from the very first scan. The results obtained are an average DICE of 0.8 for the animal MRI image scans and 0.53 for the patients MRI image scans; the reference images for both cases are manually segmented by a team of expert medical staff. In addition, the most relevant combination of parameters for the MRI modalities is determined.VILLEURBANNE-DOC'INSA-Bib. elec. (692669901) / SudocSudocFranceF

    Exploiting Heterogeneous Distributed Systems for Monte-Carlo Simulations in the Medical Field

    No full text
    Les applications Monte-Carlo sont facilement parallélisables, mais une parallélisation efficace sur des grilles de calcul est difficile à réaliser. Des stratégies avancées d'ordonnancement et de parallélisation sont nécessaires pour faire face aux taux d'erreur élevés et à l'hétérogénéité des ressources sur des architectures distribuées. En outre, la fusion des résultats partiels est également une étape critique. Dans ce contexte, l'objectif principal de notre travail est de proposer de nouvelles stratégies pour une exécution plus rapide et plus fiable des applications Monte-Carlo sur des grilles de calcul. Ces stratégies concernent à la fois le phase de calcul et de fusion des applications Monte-Carlo et visent à être utilisées en production. Dans cette thèse, nous introduisons une approche de parallélisation basée sur l'emploi des tâches pilotes et sur un nouvel algorithme de partitionnement dynamique. Les résultats obtenus en production sur l'infrastructure de grille européenne (EGI) en utilisant l'application GATE montrent que l'utilisation des tâches pilotes apporte une forte amélioration par rapport au système d'ordonnancement classique et que l'algorithme de partitionnement dynamique proposé résout le problème d'équilibrage de charge des applications Monte-Carlo sur des systèmes distribués hétérogènes. Puisque toutes les tâches finissent presque simultanément, notre méthode peut être considérée comme optimale à la fois en termes d'utilisation des ressources et de temps nécessaire pour obtenir le résultat final (makespan). Nous proposons également des stratégies de fusion avancées avec plusieurs tâches de fusion. Une stratégie utilisant des sauvegardes intermédiaires de résultat (checkpointing) est utilisée pour permettre la fusion incrémentale à partir des résultats partiels et pour améliorer la fiabilité. Un modèle est proposé pour analyser le comportement de la plateforme complète et aider à régler ses paramètres. Les résultats expérimentaux montrent que le modèle correspond à la réalité avec une erreur relative de 10% maximum, que l'utilisation de plusieurs tâches de fusion parallèles réduit le temps d'exécution total de 40% en moyenne, que la stratégie utilisant des sauvegardes intermédiaires permet la réalisation de très longues simulations sans pénaliser le makespan. Pour évaluer notre équilibrage de charge et les stratégies de fusion, nous mettons en œuvre une simulation de bout-en-bout de la plateforme décrite ci-dessus. La simulation est réalisée en utilisant l'environnement de simulation SimGrid. Les makespan réels et simulés sont cohérents, et les conclusions tirées en production sur l'influence des paramètres tels que la fréquence des sauvegardes intermédiaires et le nombre de tâches de fusion sont également valables en simulation. La simulation ouvre ainsi la porte à des études paramétriques plus approfondies.Particle-tracking Monte-Carlo applications are easily parallelizable, but efficient parallelization on computing grids is difficult to achieve. Advanced scheduling strategies and parallelization methods are required to cope with failures and resource heterogeneity on distributed architectures. Moreover, the merging of partial simulation results is also a critical step. In this context, the main goal of our work is to propose new strategies for a faster and more reliable execution of Monte-Carlo applications on computing grids. These strategies concern both the computing and merging phases of Monte-Carlo applications and aim at being used in production. In this thesis, we introduce a parallelization approach based on pilots jobs and on a new dynamic partitioning algorithm. Results obtained on the production European Grid Infrastructure (EGI) using the GATE application show that pilot jobs bring strong improvement w.r.t. regular metascheduling and that the proposed dynamic partitioning algorithm solves the load-balancing problem of particle-tracking Monte-Carlo applications executed in parallel on distributed heterogeneous systems. Since all tasks complete almost simultaneously, our method can be considered optimal both in terms of resource usage and makespan. We also propose advanced merging strategies with multiple parallel mergers. Checkpointing is used to enable incremental result merging from partial results and to improve reliability. A model is proposed to analyze the behavior of the complete framework and help tune its parameters. Experimental results show that the model fits the real makespan with a relative error of maximum 10%, that using multiple parallel mergers reduces the makespan by 40% on average, that checkpointing enables the completion of very long simulations and that it can be used without penalizing the makespan. To evaluate our load balancing and merging strategies, we implement an end-to-end SimGrid-based simulation of the previously described framework for Monte-Carlo computations on EGI. Simulated and real makespans are consistent, and conclusions drawn in production about the influence of application parameters such as the checkpointing frequency and the number of mergers are also made in simulation. These results open the door to better and faster experimentation. To illustrate the outcome of the proposed framework, we present some usage statistics and a few examples of results obtained in production. These results show that our experience in production is significant in terms of users and executions, that the dynamic load balancing can be used extensively in production, and that it significantly improves performance regardless of the variable grid conditions.VILLEURBANNE-DOC'INSA-Bib. elec. (692669901) / SudocSudocFranceF

    Locally Regularized Smoothing B-Snake

    No full text
    International audienceWe propose a locally regularized snake based on smoothing-spline filtering. The proposed algorithm associates a regularization process with a force equilibrium scheme leading the snake's deformation. In this algorithm, the regularization is implemented with a smoothing of the deformation forces. The regularization level is controlled through a unique parameter that can vary along the contour. It provides a locally regularized smoothing B-snake that offers a powerful framework to introduce prior knowledge. We illustrate the snake behavior on synthetic and real images, with global and local regularization

    Towards Integrating Spatial Localization in Convolutional Neural Networks for Brain Image Segmentation

    No full text
    International audienceSemantic segmentation is an established while rapidly evolving field in medical imaging. In this paper we focus on the segmentation of brain Magnetic Resonance Images (MRI) into cerebral structures using convolutional neural networks (CNN). CNNs achieve good performance by finding effective high dimensional image features describing the patch content only. In this work, we propose different ways to introduce spatial constraints into the network to further reduce prediction inconsistencies. A patch based CNN architecture was trained, making use of multiple scales to gather contextual information. Spatial constraints were introduced within the CNN through a distance to landmarks feature or through the integration of a probability atlas. We demonstrate experimentally that using spatial information helps to reduce segmentation inconsistencies
    corecore