55 research outputs found

    Targeting Oxidative Stress With Auranofin or Prima-1Met to Circumvent p53 or Bax/Bak Deficiency in Myeloma Cells

    Get PDF
    Prima-1Met (APR-246) was previously shown to be dependent on glutathione inhibition and on ROS induction in cancer cells with mutated or deleted TP53. Because this ROS induction was, at least in part, due to a direct interference with the thioredoxin reductase enzyme, we investigated whether activity of Prima-1Met could be mimicked by auranofin, an inhibitor of the thioredoxin reductase. We thus compared the activity of auranofin and Prima-1Met in 18 myeloma cell lines and in 10 samples from patients with multiple myeloma or plasma cell leukemia. We showed that, similar to Prima-1Met, the activity of auranofin was not dependent on either TP53 status or p53 expression; was inhibited by N-acetyl-L-cysteine, a ROS scavenger; displayed a dramatic synergy with L-buthionine sulfoximine, an irreversible inhibitor of glutathione synthesis; and induced cell death that was not dependent on Bax/Bak expression. These data showed that auranofin and Prima-1Met similarly overcome cell death resistance in myeloma cells due to either p53 deficiency or to mitochondrial dysfunction

    Deep-Learning Assessed Muscular Hypodensity Independently Predicts Mortality in DLBCL Patients Younger Than 60 Years.

    Full text link
    [en] BACKGROUND: Muscle depletion (MD) assessed by computed tomography (CT) has been shown to be a predictive marker in solid tumors, but has not been assessed in non-Hodgkin's lymphomas. Despite software improvements, MD measurement remains highly time-consuming and cannot be used in clinical practice. METHODS: This study reports the development of a Deep-Learning automatic segmentation algorithm (DLASA) to measure MD, and investigate its predictive value in a cohort of 656 diffuse large B cell lymphoma (DLBCL) patients included in the GAINED phase III prospective trial (NCT01659099). RESULTS: After training on a series of 190 patients, the DLASA achieved a Dice coefficient of 0.97 ± 0.03. In the cohort, the median skeletal muscle index was 50.2 cm2/m2 and median muscle attenuation (MA) was 36.1 Hounsfield units (HU). No impact of sarcopenia was found on either progression free survival (PFS) or overall survival (OS). Muscular hypodensity, defined as MA below the tenth percentile according to sex, was associated with a lower OS and PFS, respectively (HR = 2.80 (95% CI 1.58-4.95), p < 0.001, and HR = 2.22 (95% CI 1.43-3.45), p < 0.001). Muscular hypodensity appears to be an independent risk factor for mortality in DLBCL and because of DLASA can be estimated in routine practice

    BCL2-Family Dysregulation in B-Cell Malignancies: From Gene Expression Regulation to a Targeted Therapy Biomarker

    No full text
    International audienceBCL2-family proteins have a central role in the mitochondrial apoptosis machinery and their expression is known to be deregulated in many cancer types. Effort in the development of small molecules that selectively target anti-apoptotic members of this family i.e., Bcl-2, Bcl-xL, Mcl-1 recently opened novel therapeutic opportunities. Among these apoptosis-inducing agents, BH3-mimetics (i.e., venetoclax) led to promising preclinical and clinical activity in B cell malignancies. However, several mechanisms of intrinsic or acquired resistance have been described ex vivo therefore predictive markers of response as well as mechanism-based combinations have to be designed. In the present study, we analyzed the expression of the BCL2-family genes across 10 mature B cell malignancies through computational normalization of 21 publicly available Affimetrix datasets gathering 1,219 patient samples. To better understand the deregulation of anti-and pro-apoptotic members of the BCL2-family in hematological disorders, we first compared gene expression profiles of malignant B cells to their relative normal control (naĂŻve B cell to plasma cells, n = 37). We further assessed BCL2-family expression according to tissue localization i.e., peripheral blood, bone marrow, and lymph node, molecular subgroups or disease status i.e., indolent to aggressive. Across all cancer types, we showed that anti-apoptotic genes are upregulated while pro-apoptotic genes are downregulated when compared to normal counterpart cells. Of interest, our analysis highlighted that, independently of the nature of malignant B cells, the pro-apoptotic BH3-only BCL2L11 and PMAIP1 are deeply repressed in tumor niches, suggesting a central role of the microenvironment in their regulation. In addition, we showed selective modulations across molecular subgroups and showed that the BCL2-family expression profile was related to tumor aggressiveness. Finally, by integrating recent data on venetoclax-monotherapy clinical activity with the expression of BCL2-family members involved in the venetoclax response, we determined that the ratio (BCL2+BCL2L11+BAX)/BCL2L1 was the strongest predictor of venetoclax response for mature B cell malignancies in vivo. Q1

    p53 dysregulation in B-cell malignancies: More than a single gene in the pathway to hell

    No full text
    International audienceTP53 deletion or mutation is frequent in B-cell malignancies and is associated with a low response rate. We describe here the p53 landscape in B-cellmalignancies, from B-Acute Lymphoblastic Leukemia to Plasma Cell Leukemia, by analyzing incidence of gain or loss of function of actors both upstream and within the p53 pathway, namely MYC, RAS, ARF, MDM2, ATM and TP53. Abnormalities are not equally distributed and their incidence is highly variable among malignancies. Deletion and mutation, usually associated, of ATM or TP53 are frequent in Diffuse Large B-Cell Lymphoma and Mantle Cell Lymphoma. MYC gain, absent in post-GC malignancies, is frequent in B-Prolymphocytic-Leukemia,MultipleMyeloma and Plasma Cell Leukemias. RAS mutations are rare except in MM and PCL. Multiple Factorial Analysis notes that MYC deregulation is closely related to TP53 status. Moreover, MYC gain, TP53 deletion and RAS mutations are inversely correlated with survival. Based on this landscape, we further propose targeted therapeutic approaches for the different B-cell malignancies

    BH3-mimetic toolkit guides the respective use of BCL2 and MCL1 BH3-mimetics in myeloma treatment: Disease progression favors MCL1 priming in myeloma

    No full text
    International audienceBH3-mimetics are promising drugs for hematologic malignancies that trigger cell death by promoting the release of pro-apoptotic BCL2 family members from anti-apoptotic proteins. Multiple myeloma is considered to be a disease dependent mainly on MCL1 for survival based mostly on studies using cell lines. We used a BH3-mimetic toolkit to study the dependency on BCL2, BCLXL or MCL1 in malignant plasma cells from 60 patients. Dependencies were analyzed using an unbiased BH3-mimetics cell-death clustering by k-means. In the whole cohort of patients, BCL2 dependency was mostly found in the CCND1 subgroup (83%). Of note, MCL1 dependence significantly increased from 33% at diagnosis to 69% at relapse, suggesting a plasticity of the cellular dependency favoring MCL1 dependencies at relapse. In addition, 35% of overall patient samples showed co-dependencies on either BCL2/MCL1 or BCLXL/MCL1. Finally, we identified a group of patients not targeted by any of the BH3-mimetics, predominantly at diagnosis in patients not presenting the common recurrent translocations. Mechanistically, we demonstrated that BAK is crucial for cell death induced by MCL1 mimetic A1210477, according to the protection from cell death observed by BAK knock-down as well as the complete and early disruption of MCL1/BAK complexes upon A1210477 treatment. Interestingly, this complex was also dissociated in A1210477 resistant cells, but free BAK was simultaneously recaptured by BCLXL, supporting the role of BCLXL in A1210477 resistance. In conclusion, our study opens the way to rationally use venetoclax and/or MCL1 BH3-mimetics for clinical evaluation in myeloma both at diagnosis and relapse

    CSF1R and BTK inhibitions as novel strategies to disrupt the dialogue between mantle cell lymphoma and macrophages: MCL/macrophage protumoral interplay

    No full text
    International audienceThe microenvironment strongly influences mantle cell lymphoma (MCL) survival, proliferation and chemoresistance. However, little is known regarding the molecular characterization of lymphoma niches. Here, we focused on the interplay between MCL cells and associated monocytes/macrophages. Using circulating MCL cells (n=58), we showed that, through the secretion of CSF1 and, to a lesser extent, IL-10, MCL polarized monocytes into specific CD163+ M2-like macrophages (MϕMCL). In turn, MϕMCL favored lymphoma survival and proliferation ex vivo. We next demonstrated that BTK inhibition abrogated CSF1 and IL-10 production in MCL cells leading to the inhibition of macrophage polarization and consequently resulting in the suppression of microenvironment-dependent MCL expansion. In vivo, we showed that CSF1 and IL-10 plasma concentrations were higher in MCL patients than in healthy donors, and that monocytes from MCL patients overexpressed CD163. Further analyses of serial samples from ibrutinib-treated patients (n=8) highlighted a rapid decrease of CSF1, IL-10 and CD163 in responsive patients. Finally, we showed that targeting the CSF1R abrogated MϕMCL-dependent MCL survival, irrespective of their sensitivity to ibrutinib. These data reinforced the role of the microenvironment in lymphoma and suggested that macrophages are a potential target for developing novel therapeutic strategies in MCL

    CSF1R and BTK inhibitions as novel strategies to disrupt the dialogue between mantle cell lymphoma and macrophages: MCL/macrophage protumoral interplay

    No full text
    International audienceThe microenvironment strongly influences mantle cell lymphoma (MCL) survival, proliferation and chemoresistance. However, little is known regarding the molecular characterization of lymphoma niches. Here, we focused on the interplay between MCL cells and associated monocytes/macrophages. Using circulating MCL cells (n=58), we showed that, through the secretion of CSF1 and, to a lesser extent, IL-10, MCL polarized monocytes into specific CD163+ M2-like macrophages (MϕMCL). In turn, MϕMCL favored lymphoma survival and proliferation ex vivo. We next demonstrated that BTK inhibition abrogated CSF1 and IL-10 production in MCL cells leading to the inhibition of macrophage polarization and consequently resulting in the suppression of microenvironment-dependent MCL expansion. In vivo, we showed that CSF1 and IL-10 plasma concentrations were higher in MCL patients than in healthy donors, and that monocytes from MCL patients overexpressed CD163. Further analyses of serial samples from ibrutinib-treated patients (n=8) highlighted a rapid decrease of CSF1, IL-10 and CD163 in responsive patients. Finally, we showed that targeting the CSF1R abrogated MϕMCL-dependent MCL survival, irrespective of their sensitivity to ibrutinib. These data reinforced the role of the microenvironment in lymphoma and suggested that macrophages are a potential target for developing novel therapeutic strategies in MCL

    Whole-exon sequencing of human myeloma cell lines shows mutations related to myeloma patients at relapse with major hits in the DNA regulation and repair pathways

    No full text
    International audienceBackground: Human myeloma cell lines (HMCLs) are widely used for their representation of primary myeloma cells because they cover patient diversity, although not fully. Their genetic background is mostly undiscovered, and no comprehensive study has ever been conducted in order to reveal those details. Methods: We performed whole-exon sequencing of 33 HMCLs, which were established over the last 50 years in 12 laboratories. Gene expression profiling and drug testing for the 33 HMCLs are also provided and correlated to exon-sequencing findings. Results: Missense mutations were the most frequent hits in genes (92%). HMCLs harbored between 307 and 916 mutations per sample, with TP53 being the most mutated gene (67%). Recurrent bi-allelic losses were found in genes involved in cell cycle regulation (RB1, CDKN2C), the NFÎșB pathway (TRAF3, BIRC2), and the p53 pathway (TP53, CDKN2A). Frequency of mutations/deletions in HMCLs were either similar to that of patients (e.g., DIS3, PRDM1, KRAS) or highly increased (e.g., TP53, CDKN2C, NRAS, PRKD2). MAPK was the most altered pathway (82% of HMCLs), mainly by RAS mutants. Surprisingly, HMCLs displayed alterations in epigenetic (73%) and Fanconi anemia (54%) and few alterations in apoptotic machinery. We further identified mutually exclusive and associated mutations/deletions in genes involved in the MAPK and p53 pathways as well as in chromatin regulator/modifier genes. Finally, by combining the gene expression profile, gene mutation, gene deletion, and drug response, we demonstrated that several targeted drugs overcome or bypass some mutations
    • 

    corecore