2,953 research outputs found

    Geometry fluctuations in a two-dimensional quantum antiferromagnet

    Full text link
    The paper considers the effects of random fluctuations of the local spin connectivities (fluctuations of the geometry) on ground state properties of a two-dimensional quantum antiferromagnet. We analyse the behavior of spins described by the Heisenberg model as a function of what we call phason flip disorder, following a terminology used for aperiodic systems. The calculations were carried out both within linear spin wave theory and using quantum Monte Carlo simulations. An "order by disorder" phenomenon is observed in this model, wherein antiferromagnetism is found to be enhanced by phason disorder. The value of the staggered order parameter increases with the number of defects, accompanied by an increase in the ground state energy of the system.Comment: 5 pages, 7 figures. Shortened and corrected version (as accepted for publication in Physical Review B

    Random quantum channels I: graphical calculus and the Bell state phenomenon

    Full text link
    This paper is the first of a series where we study quantum channels from the random matrix point of view. We develop a graphical tool that allows us to compute the expected moments of the output of a random quantum channel. As an application, we study variations of random matrix models introduced by Hayden \cite{hayden}, and show that their eigenvalues converge almost surely. In particular we obtain for some models sharp improvements on the value of the largest eigenvalue, and this is shown in a further work to have new applications to minimal output entropy inequalities.Comment: Several typos were correcte

    Semi-classical analysis of real atomic spectra beyond Gutzwiller's approximation

    Full text link
    Real atomic systems, like the hydrogen atom in a magnetic field or the helium atom, whose classical dynamics are chaotic, generally present both discrete and continuous symmetries. In this letter, we explain how these properties must be taken into account in order to obtain the proper (i.e. symmetry projected) ℏ\hbar expansion of semiclassical expressions like the Gutzwiller trace formula. In the case of the hydrogen atom in a magnetic field, we shed light on the excellent agreement between present theory and exact quantum results.Comment: 4 pages, 1 figure, final versio

    Comment on "Turbulent heat transport near critical points: Non-Boussinesq effects" (cond-mat/0601398)

    Get PDF
    In a recent preprint (cond-mat/0601398), D. Funfschilling and G. Ahlers describe a new effect, that they interpret as non-Boussinesq, in a convection cell working with ethane, near its critical point. They argue that such an effect could have spoiled the Chavanne {\it et al.} (Phys. Rev. Lett. {\bf 79} 3648, 1997) results, and not the Niemela {\it et al.} (Nature, {\bf 404}, 837, 2000) ones, which would explain the differences between these two experiments. We show that:-i)Restricting the Chavanne's data to situations as far from the critical point than the Niemela's one, the same discrepancy remains.-ii)The helium data of Chavanne show no indication of the effect observed by D. Funfschilling and G. Ahlers.Comment: comment on cond-mat/060139

    Slippage of water past superhydrophobic carbon nanotube forests in microchannels

    Full text link
    We present in this letter an experimental characterization of liquid flow slippage over superhydrophobic surfaces made of carbon nanotube forests, incorporated in microchannels. We make use of a micro-PIV (Particule Image Velocimetry) technique to achieve the submicrometric resolution on the flow profile necessary for accurate measurement of the surface hydrodynamic properties. We demonstrate boundary slippage on the Cassie superhydrophobic state, associated with slip lengths of a few microns, while a vanishing slip length is found in the Wenzel state, when the liquid impregnates the surface. Varying the lateral roughness scale L of our carbon nanotube forest-based superhydrophobic surfaces, we demonstrate that the slip length varies linearly with L in line with theoretical predictions for slippage on patterned surfaces.Comment: under revie

    Design and production of nanoparticles formulated from nano-emulsion templates-a review

    Get PDF
    A considerable number of nanoparticle formulation methods are based on nano-emulsion templates, which in turn are generated in various ways. It must therefore be taken into account that active principles and drugs encapsulated in nanoparticles can potentially be affected by these nano-emulsion formulation processes. Such potential differences may include drug sensitivity to temperature, high-shear devices, or even contact with organic solvents. Likewise, nano-emulsion formulation processes must be chosen in function of the selected therapeutic goals of the nano-carrier suspension and its administration route. This requires the nanoparticle formulation processes (and thus the nano-emulsion formation methods) to be more adapted to the nature of the encapsulated drugs, as well as to the chosen route of administration. Offering a comprehensive review, this paper proposes a link between nano-emulsion formulation methods and nanoparticle generation, while at the same time bearing in mind the above-mentioned parameters for active molecule encapsulation. The first part will deal with the nano-emulsion template through the different formulation methods, i.e. high energy methods on the one hand, and low-energy ones (essentially spontaneous emulsification and the phase inversion temperature (PIT) method) on the other. This will be followed by a review of the different families of nanoparticles (i.e. polymeric or lipid nanospheres and nanocapsules) highlighting the links (or potential links) between these nanoparticles and the different nano-emulsion formulation methods upon which they are based
    • 

    corecore