24 research outputs found

    The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma

    Get PDF
    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) based on multidimensional and comprehensive characterization, including mitochondrial DNA (mtDNA) and whole genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared to other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT up-regulation in cancer distinct from previously-observed amplifications and point mutations

    Bifunctional Luminomagnetic Rare-Earth Nanorods for High-Contrast Bioimaging Nanoprobes

    Get PDF
    Nanoparticles exhibiting both magnetic and luminescent properties are need of the hour for many biological applications. A single compound exhibiting this combination of properties is uncommon. Herein, we report a strategy to synthesize a bifunctional luminomagnetic Gd2-xEuxO3 (x = 0.05 to 0.5) nanorod, with a diameter of similar to 20 nm and length in similar to 0.6 mu m, using hydrothermal method. Gd2O3:Eu3+ nanorods have been characterized by studying its structural, optical and magnetic properties. The advantage offered by photoluminescent imaging with Gd2O3:Eu3+ nanorods is that this ultrafine nanorod material exhibits hypersensitive intense red emission (610 nm) with good brightness (quantum yield more than 90%), which is an essential parameter for high-contrast bioimaging, especially for overcoming auto fluorescent background. The utility of luminomagnetic nanorods for biological applications in high-contrast cell imaging capability and cell toxicity to image two human breast cancer cell lines T47D and MDA-MB-231 are also evaluated. Additionally, to understand the significance of shape of the nanostructure, the photoluminescence and paramagnetic characteristic of Gd2O3:Eu3+ nanorods were compared with the spherical nanoparticles of Gd2O3:Eu3+

    Targeting Mitochondrial Damage as a Therapeutic for Ileal Crohn’s Disease

    No full text
    Paneth cell defects in Crohn’s disease (CD) patients (called the Type I phenotype) are associated with worse clinical outcomes. Recent studies have implicated mitochondrial dysfunction in Paneth cells as a mediator of ileitis in mice. We hypothesized that CD Paneth cells exhibit impaired mitochondrial health and that mitochondrial-targeted therapeutics may provide a novel strategy for ileal CD. Terminal ileal mucosal biopsies from adult CD and non-IBD patients were characterized for Paneth cell phenotyping and mitochondrial damage. To demonstrate the response of mitochondrial-targeted therapeutics in CD, biopsies were treated with vehicle or Mito-Tempo, a mitochondrial-targeted antioxidant, and RNA transcriptome was analyzed. During active CD inflammation, the epithelium exhibited mitochondrial damage evident in Paneth cells, goblet cells, and enterocytes. Independent of inflammation, Paneth cells in Type I CD patients exhibited mitochondrial damage. Mito-Tempo normalized the expression of interleukin (IL)-17/IL-23, lipid metabolism, and apoptotic gene signatures in CD patients to non-IBD levels. When stratified by Paneth cell phenotype, the global tissue response to Mito-Tempo in Type I patients was associated with innate immune, lipid metabolism, and G protein-coupled receptor (GPCR) gene signatures. Targeting impaired mitochondria as an underlying contributor to inflammation provides a novel treatment approach for CD

    Assessing Therapeutic Efficacy in Real-time by Hyperpolarized Magnetic Resonance Metabolic Imaging

    No full text
    Precisely measuring tumor-associated alterations in metabolism clinically will enable the efficient assessment of therapeutic responses. Advances in imaging technologies can exploit the differences in cancer-associated cell metabolism as compared to normal tissue metabolism, linking changes in target metabolism to therapeutic efficacy. Metabolic imaging by Positron Emission Tomography (PET) employing 2-fluoro-deoxy-glucose ([18F]FDG) has been used as a routine diagnostic tool in the clinic. Recently developed hyperpolarized Magnetic Resonance (HP-MR), which radically increases the sensitivity of conventional MRI, has created a renewed interest in functional and metabolic imaging. The successful translation of this technique to the clinic was achieved recently with measurements of 13C-pyruvate metabolism. Here, we review the potential clinical roles for metabolic imaging with hyperpolarized MRI as applied in assessing therapeutic intervention in different cancer systems

    Assessing Therapeutic Efficacy in Real-time by Hyperpolarized Magnetic Resonance Metabolic Imaging

    No full text
    Precisely measuring tumor-associated alterations in metabolism clinically will enable the efficient assessment of therapeutic responses. Advances in imaging technologies can exploit the differences in cancer-associated cell metabolism as compared to normal tissue metabolism, linking changes in target metabolism to therapeutic efficacy. Metabolic imaging by Positron Emission Tomography (PET) employing 2-fluoro-deoxy-glucose ([F-18]FDG) has been used as a routine diagnostic tool in the clinic. Recently developed hyperpolarized Magnetic Resonance (HP-MR), which radically increases the sensitivity of conventional MRI, has created a renewed interest in functional and metabolic imaging. The successful translation of this technique to the clinic was achieved recently with measurements of C-13-pyruvate metabolism. Here, we review the potential clinical roles for metabolic imaging with hyperpolarized MRI as applied in assessing therapeutic intervention in different cancer systems

    Poly-albumen: Bio-derived structural polymer from polymerized egg white

    No full text
    Bio-derived materials could play an important role in future sustainable green and health technologies. This work reports the synthesis of a unique egg white-based bio-derived material showing excellent stiffness and ductility by polymerizing it with primary amine-based chemical compounds to form strong covalent bonds. As shown by both experiments and theoretical simulations, the amine-based molecules introduce strong bonds between amine ends and carboxylic ends of albumen amino acids resulting in an elastic modulus of ∼4 GPa, a fracture strength of ∼2 MPa and a high ductility of 40%. The distributed and interconnected network of interfaces between the hard albumen and the soft amine compounds gives the structure its unique combination of high stiffness and plasticity. A range of in-situ local and bulk mechanical tests as well as molecular dynamics (MD) simulations, reveal a significant interfacial stretching during deformation and a micro-crack diversion leading to an increased in ductility and toughness. The structure also shows a self-stiffening behavior under dynamic loading and a strength-induced aging suggesting adaptive mechanical behavior. This egg white-derived material could also be developed for bio-compatible and bio-medical applications.by Peter Samora Owuor, Thierry Tsafack, Himani Agrawal, Hye Yoon Hwang, Matthew Zeliskob, Tong Lic, Sruthi Radhakrishnan, Jun Hyoung Park, Yingchao Yang, Anthony S. Stender, Sehmus Ozden, Jarin Joyner, Robert Vajtai, Benny A. Kaipparettu, Bingqing Wei, Jun Lou, Pradeep Sharma, Chandra Sekhar Tiwarya and Pulickel M. Ajaya

    Table1_Screening of GPCR drugs for repurposing in breast cancer.XLSX

    No full text
    Drug repurposing can overcome both substantial costs and the lengthy process of new drug discovery and development in cancer treatment. Some Food and Drug Administration (FDA)-approved drugs have been found to have the potential to be repurposed as anti-cancer drugs. However, the progress is slow due to only a handful of strategies employed to identify drugs with repurposing potential. In this study, we evaluated GPCR-targeting drugs by high throughput screening (HTS) for their repurposing potential in triple-negative breast cancer (TNBC) and drug-resistant human epidermal growth factor receptor-2-positive (HER2+) breast cancer (BC), due to the dire need to discover novel targets and drugs in these subtypes. We assessed the efficacy and potency of drugs/compounds targeting different GPCRs for the growth rate inhibition in the following models: two TNBC cell lines (MDA-MB-231 and MDA-MB-468) and two HER2+ BC cell lines (BT474 and SKBR3), sensitive or resistant to lapatinib + trastuzumab, an effective combination of HER2-targeting therapies. We identified six drugs/compounds as potential hits, of which 4 were FDA-approved drugs. We focused on β-adrenergic receptor-targeting nebivolol as a candidate, primarily because of the potential role of these receptors in BC and its excellent long-term safety profile. The effects of nebivolol were validated in an independent assay in all the cell line models. The effects of nebivolol were independent of its activation of β3 receptors and nitric oxide production. Nebivolol reduced invasion and migration potentials which also suggests its inhibitory role in metastasis. Analysis of the Surveillance, Epidemiology and End Results (SEER)-Medicare dataset found numerically but not statistically significant reduced risk of all-cause mortality in the nebivolol group. In-depth future analyses, including detailed in vivo studies and real-world data analysis with more patients, are needed to further investigate the potential of nebivolol as a repurposed therapy for BC.</p
    corecore