1,056 research outputs found

    A lifted Bregman formulation for the inversion of deep neural networks

    Get PDF
    We propose a novel framework for the regularized inversion of deep neural networks. The framework is based on the authors' recent work on training feed-forward neural networks without the differentiation of activation functions. The framework lifts the parameter space into a higher dimensional space by introducing auxiliary variables, and penalizes these variables with tailored Bregman distances. We propose a family of variational regularizations based on these Bregman distances, present theoretical results and support their practical application with numerical examples. In particular, we present the first convergence result (to the best of our knowledge) for the regularized inversion of a single-layer perceptron that only assumes that the solution of the inverse problem is in the range of the regularization operator, and that shows that the regularized inverse provably converges to the true inverse if measurement errors converge to zero

    Learning filter functions in regularisers by minimising quotients

    Get PDF
    Learning approaches have recently become very popular in the field of inverse problems. A large variety of methods has been established in recent years, ranging from bi-level learning to high-dimensional machine learning techniques. Most learning approaches, however, only aim at fitting parametrised models to favourable training data whilst ignoring misfit training data completely. In this paper, we follow up on the idea of learning parametrised regularisation functions by quotient minimisation as established in [3]. We extend the model therein to include higher-dimensional filter functions to be learned and allow for fit- and misfit-training data consisting of multiple functions. We first present results resembling behaviour of well-established derivative-based sparse regularisers like total variation or higher-order total variation in one-dimension. Our second and main contribution is the introduction of novel families of non-derivative-based regularisers. This is accomplished by learning favourable scales and geometric properties while at the same time avoiding unfavourable ones

    Hydrogen reliquifier Quarterly report, 27 Sept. - 26 Dec. 1967

    Get PDF
    Computer analyzed hydrogen reliquefier cycles for selection of optimal cycle, rates, and heat exchanger

    Comparative Proteomics of Chloroplast Envelopes from C-3 and C-4 Plants Reveals Specific Adaptations of the Plastid Envelope to C-4 Photosynthesis and Candidate Proteins Required for Maintaining C-4 Metabolite Fluxes (vol 148, pg 568, 2008)

    Get PDF
    Bräutigam A, Hoffmann-Benning S, Weber APM. Comparative Proteomics of Chloroplast Envelopes from C-3 and C-4 Plants Reveals Specific Adaptations of the Plastid Envelope to C-4 Photosynthesis and Candidate Proteins Required for Maintaining C-4 Metabolite Fluxes (vol 148, pg 568, 2008). Plant Physiology. 2008;148(3):1734

    Deep learning as optimal control problems: Models and numerical methods

    Get PDF
    We consider recent work of Haber and Ruthotto 2017 and Chang et al. 2018, where deep learning neural networks have been interpreted as discretisations of an optimal control problem subject to an ordinary differential equation constraint. We review the first order conditions for optimality, and the conditions ensuring optimality after discretisation. This leads to a class of algorithms for solving the discrete optimal control problem which guarantee that the corresponding discrete necessary conditions for optimality are fulfilled. The differential equation setting lends itself to learning additional parameters such as the time discretisation. We explore this extension alongside natural constraints (e.g. time steps lie in a simplex). We compare these deep learning algorithms numerically in terms of induced flow and generalisation ability

    Choose your path wisely: gradient descent in a Bregman distance framework

    Get PDF
    We propose an extension of a special form of gradient descent --- in the literature known as linearised Bregman iteration -- to a larger class of non-convex functions. We replace the classical (squared) two norm metric in the gradient descent setting with a generalised Bregman distance, based on a proper, convex and lower semi-continuous function. The algorithm's global convergence is proven for functions that satisfy the Kurdyka-\L ojasiewicz property. Examples illustrate that features of different scale are being introduced throughout the iteration, transitioning from coarse to fine. This coarse-to-fine approach with respect to scale allows to recover solutions of non-convex optimisation problems that are superior to those obtained with conventional gradient descent, or even projected and proximal gradient descent. The effectiveness of the linearised Bregman iteration in combination with early stopping is illustrated for the applications of parallel magnetic resonance imaging, blind deconvolution as well as image classification with neural networks

    Choose your Path Wisely:Gradient Descent in a Bregman Distance Framework

    Get PDF
    We propose an extension of a special form of gradient descent --- in the literature known as linearised Bregman iteration --- to a larger class of non-convex functions. We replace the classical (squared) two norm metric in the gradient descent setting with a generalised Bregman distance, based on a proper, convex and lower semi-continuous function. The algorithm's global convergence is proven for functions that satisfy the Kurdyka-Lojasiewicz property. Examples illustrate that features of different scale are being introduced throughout the iteration, transitioning from coarse to fine. This coarse-to-fine approach with respect to scale allows to recover solutions of non-convex optimisation problems that are superior to those obtained with conventional gradient descent, or even projected and proximal gradient descent. The effectiveness of the linearised Bregman iteration in combination with early stopping is illustrated for the applications of parallel magnetic resonance imaging, blind deconvolution as well as image classification with neural networks

    Deep learning as optimal control problems

    Get PDF
    We briefly review recent work where deep learning neural networks have been interpreted as discretisations of an optimal control problem subject to an ordinary differential equation constraint. We report here new preliminary experiments with implicit symplectic Runge-Kutta methods. In this paper, we discuss ongoing and future research in this area

    An entropic Landweber method for linear ill-posed problems

    Get PDF
    The aim of this paper is to investigate the use of a Landweber-type method involving the Shannon entropy for the regularization of linear ill-posed problems. We derive a closed form solution for the iterates and analyze their convergence behaviour both in a case of reconstructing general nonnegative unknowns as well as for the sake of recovering probability distributions. Moreover, we discuss several variants of the algorithm and relations to other methods in the literature. The effectiveness of the approach is studied numerically in several examples
    • …
    corecore