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Abstract. We propose an extension of a special form of gradient descent — in the literature known as linearised4
Bregman iteration — to a larger class of non-convex functions. We replace the classical (squared)5
two norm metric in the gradient descent setting with a generalised Bregman distance, based on a6
proper, convex and lower semi-continuous function. The algorithm’s global convergence is proven7
for functions that satisfy the Kurdyka- Lojasiewicz property. Examples illustrate that features of8
different scale are being introduced throughout the iteration, transitioning from coarse to fine. This9
coarse-to-fine approach with respect to scale allows to recover solutions of non-convex optimisation10
problems that are superior to those obtained with conventional gradient descent, or even projected11
and proximal gradient descent. The effectiveness of the linearised Bregman iteration in combination12
with early stopping is illustrated for the applications of parallel magnetic resonance imaging, blind13
deconvolution as well as image classification with neural networks.14
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1. Introduction. Non-convex optimisation methods are indispensable mathematical tools18

for a large variety of applications [62]. For differentiable objectives, first-order methods such19

as gradient descent have proven to be useful tools in all kinds of scenarios. Throughout20

the last decade, however, there has been an increasing interest in first-order methods for non-21

convex and non-smooth objectives. These methods range from forward-backward, respectively22

proximal-type, schemes [2, 3, 4, 18, 19], over linearised proximal schemes [80, 16, 81, 61], to23

inertial methods [63, 68], primal-dual algorithms [78, 52, 57, 12], scaled gradient projection24

methods [69] and non-smooth Gauß-Newton extensions [35, 64].25

In this paper, we follow a different approach of incorporating non-smoothness into first-26

order methods for non-convex problems. We present a direct generalisation of gradient descent,27

first introduced in [10], where the usual squared two-norm metric that penalises the gap of28

two subsequent iterates is being replaced by a potentially non-smooth distance term. This29

distance term is given in form of a generalised Bregman distance [20, 22, 66], where the under-30

lying function is proper, lower semi-continuous and convex, but not necessarily smooth. If the31

underlying function is a Legendre function (see [73, Section 26] and [7]), the proposed gener-32

∗Submitted to the editors DATE.
Funding: This work was funded by the Leverhulme Trust Early Career Fellowship ’Learning from mistakes: a

supervised feedback-loop for imaging applications’, the Isaac Newton Trust, the Engineering and Physical Sciences
Research Council (EPSRC) ’EP/K009745/1’, the Leverhulme Trust project ’Breaking the non-convexity barrier’,
the EPSRC grant ’EP/M00483X/1’, the EPSRC centre ’EP/N014588/1’, the Cantab Capital Institute for the
Mathematics of Information and CHiPS (Horizon 2020 RISE project grant).
†School of Mathematical Sciences, Queen Mary University of London, UK (m.benning@qmul.ac.uk).
‡Department of Computer Science, University College London, UK (m.betcke@ucl.ac.uk).
§Institute for Mathematical Innovation, University of Bath, UK (m.ehrhardt@bath.ac.uk).
¶Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK (cbs31@cam.ac.uk).

1

This manuscript is for review purposes only.

mailto:m.benning@qmul.ac.uk
mailto:m.betcke@ucl.ac.uk
mailto:m.ehrhardt@bath.ac.uk
mailto:cbs31@cam.ac.uk


2 M. BENNING, M. M. BETCKE, M. J. EHRHARDT , and C.-B. SCHÖNLIEB.

alisation basically coincides with the recently proposed non-convex extension of the Bregman33

proximal gradient method [17]. In the more general case, the proposed method is a gen-34

eralisation of the so-called linearised Bregman iteration [33, 83, 25, 24] to non-convex data35

fidelities.36

Motivated by inverse scale space methods (cf. [21, 22, 66]), the use of non-smooth Bregman37

distances for the penalisation of the iterates gap allows to control the scale of features present38

in the individual iterates. Replacing the squared two-norm, for instance, with a squared two-39

norm plus the Bregman distance w.r.t. a one-norm leads to very sparse initial iterates, with40

iterates becoming more dense throughout the course of the iteration. This control of scale,41

i.e. the slow evolution from iterates with coarse structures to iterates with fine structures, can42

help tp overcome unwanted minima of a non-convex objective, as we are going to demonstrate43

with an example in Section 2. This is in stark contrast to many of the non-smooth, non-convex44

first-order approaches mentioned above, where the methods are often initialised with random45

inputs that become more regular throughout the iteration.46

Our main contributions of this paper are the generalisation of the linearised Bregman47

iteration to non-convex functions, a detailed convergence analysis of the proposed method48

as well as the presentation of numerical results that demonstrate that the use of coarse-to-49

fine scale space approaches in the context of non-convex optimisation can lead to superior50

solutions.51

The outline of the paper is as follows. Based on the non-convex problem of blind decon-52

volution, we first give a motivation in Section 2 of why a coarse-to-fine approach in terms53

of scale can indeed lead to superior solutions of non-convex optimisation problems. We then54

recall key concepts of convex and non-convex analysis that are needed throughout the pa-55

per in Section A. Subsequently, we define the extension of the linearised Bregman iteration56

for non-convex functions in Section 3. Then, motivated by the informal convergence recipe of57

Bolte et al. [16, Section 3.2] we show a global convergence result in Section 4, which concludes58

the theoretical part. We conclude with the modelling of the applications of parallel Magnetic59

Resonance Imaging (MRI), blind deconvolution and image classification in Section 5, followed60

by corresponding numerical results in Section 6 as well as conclusions and outlook in Section61

7.62

2. Motivation. We want to motivate the use of the linearised Bregman iteration for non-63

convex optimisation problems with the example of blind deconvolution. In blind (image)64

deconvolution the goal is to recover an unknown image u from a blurred and usually noisy65

image f . Assuming that the degradation is the same for each pixel, the problem of blind66

deconvolution can be modelled as the minimisation of the energy67

E1(u, h) :=
1

2
‖u ∗ h− f‖22︸ ︷︷ ︸

=:F (u,h)

+χC(h) ,(2.1)68

69

with respect to the arguments u ∈ Rn and h ∈ Rr. Here ∗ denotes a discrete convolution70

operator, and χC , is the characteristic function71

χC(h) :=

{
0 h ∈ C
∞ h 6∈ C

,72

73
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(a) Original image û (b) f and ĥ (c) Projected gradient descent

(d) α = 10−3 (e) α = 10−4

Figure 2.1. Standard approaches for blind deconvolution. Figure 2.1a shows the image û of Pixel the
Gambian pouched rat, courtesy of Monique Boddington. Figure 2.1b shows a motion-blurred version f of that
same image; the corresponding convolution kernel ĥ is depicted in the bottom left corner. Figure 2.1c visualises
the reconstruction of the image and the convolution kernel obtained with the projected gradient descent method
(2.2). In Figure 2.1d we see the result of gradient descent method (2.4) for α = 10−3, whereas Figure 2.1e
shows the result of (2.4) for the choice α = 10−4.

defined over the simplex constraint set74

C :=

h ∈ Rr
∣∣∣∣∣∣

r∑
j=1

hj = 1, hj ≥ 0, ∀j ∈ {1, . . . , r}

 .75

76

Even with data f in the range of the non-linear convolution operator, i.e. f = û ∗ ĥ for some77

û ∈ Rn with ĥ ∈ C, it is usually still fairly challenging to recover û and ĥ as solutions of78

(2.1). A possible reason for this could be that (2.1) is an invex function on Rn × C, where79

every stationary point is already a global minimum. If we simply try to recover û and ĥ80

via projected gradient descent, we usually require an initial point in the neighbourhood of81

(û, ĥ) in order to converge to that point. We want to illustrate this with a concrete example.82

Assume we are given an image û and a convolution kernel ĥ as depicted in Figure 2.1, and83

f = û ∗ ĥ is as shown in Figure 2.1b. Minimising (2.1) via projected gradient descent leads to84

the following procedure:85

uk+1 = uk − τk ∂u F (uk, hk) ,(2.2a)86

hk+1 = projC

(
hk − τk ∂h F (uk, hk)

)
,(2.2b)87

88
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where projC denotes the projection onto the convex set C. If we initialise with u0 = (0, . . . , 0)T89

and h0 = (1, . . . , 1)T /r, set τ0 = 1, update τk via backtracking to ensure a monotonic decrease90

of the energy E1, and iterate (2.2) for 3500 iterations, we obtain the reconstructions visualised91

in Figure 2.1c. Even without any noise present in the data f , the algorithm converges to a92

solution very different from û and ĥ. This is not necessarily surprising as we do not impose93

any regularity on the image. We can try to overcome this issue by modifying (2.1) as follows:94

E2(u, h) := F (u, h) + χC(h) + αTV(u) ,(2.3)95

= E1(u, h) + αTV(u) .9697

Here TV denotes the discretised total variation, i.e.98

TV(u) := ‖|∇u|‖1 ,99100

where ∇ : Rn → R2n is a (forward) finite difference discretisation of the gradient operator,101

| · | the Euclidean vector norm and ‖ · ‖1 the one-norm, and α is a positive scalar. The102

minimisation of (2.3) can easily be carried out by the proximal gradient descent method,103

also known as forward-backward splitting [54], which is a minor modification of the projected104

gradient method [41, 42, 13] to more general proximal mappings. In the context of minimising105

(2.3), the proximal gradient method reads as106

uk+1 = (I + α∂TV)−1(uk − τk ∂u F (uk, hk)) ,(2.4a)107

hk+1 = projC

(
hk − τk ∂h F (uk, hk)

)
,(2.4b)108

109

where (I+α∂TV)−1 denotes the proximal mapping [58, 59] with respect to the total variation,110

i.e.111

(I + α∂TV)−1(z) := arg min
u∈Rn

{
1

2
‖u− z‖22 + αTV(u)

}
.(2.5)112

113

It is straight-forward to solve (2.5) for a given argument with numerical methods such as the114

(accelerated) primal-dual hybrid gradient method (cf. [84, 67, 37, 28, 29]) up to sufficient115

numerical accuracy. If we then evaluate 3000 iterations of (2.4) for α ∈ {10−3, 10−4} with116

the same initial values that we used for the projected gradient method, we obtain the results117

visualised in Figure 2.1. We observe that for the larger choice of α = 10−3 we obtain a118

better reconstruction of the convolution kernel, but at the cost of a reconstructed image that119

is very cartoon-like. Reducing the parameter α to α = 10−4 reduces the impact of the total120

variation regularisation; however, the reconstructed image then remains fairly blurry and the121

reconstructed convolution kernel is closer to a Dirac delta.122

The reason for this is that the total variation-based model (2.3) is basically not suitable123

for deconvolution tasks. Blurred images generally have a smaller total variation compared to124

their sharp counterparts, hence it is easier to minimise the energy in (2.3) by recovering a125

kernel close to a Dirac delta and a smoothed version of the blurry image in order to reduce126

the total variation.127
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(a) 1st iterate (b) 10th iterate (c) 50th iterate

(d) 500th iterate (e) 1500th iterate (f) 3000th iterate

Figure 2.2. Proposed approach for blind deconvolution. Figure 2.2 shows several iterates of the
linearised Bregman iteration (2.6) for the choice α = 0.05. The strong initial effect of the total variation
regularisation enables the algorithm to converge to a solution close to û and ĥ.

We therefore want to use an alternative approach that is different to the two approaches128

presented above. We do observe from the proximal gradient example that a larger regulari-129

sation parameter seems to work better for a more accurate reconstruction of the convolution130

kernel (at the cost of a rather cartoon-like image). The explanation for this is that image131

features at a relatively coarse scale have to be adjusted to minimise the data fit, forcing the132

convolution kernel to correct for this. It therefore seems reasonable to find a minimiser of133

(2.1) with a scale-space approach, changing from coarse to fine scales over the course of the134

iteration. Specifically, we propose to use a variant of the linearised Bregman iteration adopted135

to minimising non-convex problems such as the minimisation of the function E1 as defined in136

(2.1). For the choice of E1 in (2.1), this method reads as137

uk+1 = arg min
u∈Rn

{
1

2
‖u− uk‖2 + τk

(
αDqk

TV(u, uk) + 〈∂u F (uk, hk), u〉
)}

,(2.6a)138

qk+1 = qk − 1

τkα

(
uk − uk+1 − τk ∂u F (uk, hk)

)
,(2.6b)139

hk+1 = projC

(
hk − τk ∂h F (uk, hk)

)
.(2.6c)140

141

Here qk ∈ ∂TV(uk) denotes a subgradient of TV at uk, α ≥ 0 is a scalar and Dqk

TV(uk+1, uk)142

is the generalised Bregman distance [20] with respect to the total variation, i.e.143

Dqk

TV(uk+1, uk) = TV(uk+1)− TV(uk)− 〈qk, uk+1 − uk〉 ,144145
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Algorithm 3.1 Generalised linearised Bregman iteration for minimising E

Initialise {τk}k∈N, u0 and p0 ∈ ∂J(u0)
for k = 0, 1, . . . do

Compute uk+1 = arg minu∈Rn

{
τk〈u− uk,∇E(uk)〉+Dpk

J (u, uk)
}

Compute pk+1 = pk − τk∇E(uk)
end for

for a subgradient qk ∈ ∂TV(uk). Note that (2.6) reduces to the projected gradient method146

(2.2) for the choice α = 0.147

Replacing the total variation semi-norm in (2.4) with its Bregman distance yields an148

iterative scale-space method that changes the influence of the total variation regularisation149

throughout the course of the iteration. With a larger parameter α, the initial iterates have a150

very low total variation and contain only coarse features. Throughout the iteration, features151

of finer and finer scale are introduced. We have visualised several iterates of (2.6) for the152

choice α = 0.05 in Figure 2.2 to demonstrate this phenomenon.153

We observe that this modification of projected gradient descent enables us to converge to154

minimisers of E1 as defined in (2.1) that are fairly close to the original choices of û and ĥ.155

Hence, the choice of Bregman distance strongly affects the outcome of the iteration procedure156

and can be used to guide the iterates towards more desirable outcomes.157

Obviously real data is never in the range of the forward model, and in that case we do not158

want to converge to a minimiser of E1. However, we can still apply the linearised Bregman159

iteration in combination with early stopping in order to produce superior results compared to160

projected or proximal gradient descent, which we will further demonstrate in Section 5 and161

Section 6. Prior to this, we provide a comprehensive convergence analysis of the linearised162

Bregman iteration in the Sections 3 and 4.163

3. Linearised Bregman iteration for non-convex problems. We are interested in the164

minimisation of functions E ∈ SL, where SL is defined in Definition A.8 in the appendix. We165

want to emphasise that the function E does not necessarily have to be convex. In order for166

the minimisation of E to make sense, we have to introduce some additional assumptions for167

this function first. From now on we assume E ∈ ΨL, with ΨL being defined as168

ΨL :=

{
E ∈ SL

∣∣∣∣ E has bounded level sets
E is bounded from below

}
.169

170

We further recall the definition of the set of critical points of E, i.e.171

crit(E) := {u ∈ dom(E) | ∇E(u) = 0} .(3.1)172173

The requirements on E ensure that sequences {uk}k∈N are already bounded if the sequences174

{E(uk)}k∈N are bounded, that an infimum exists and that the set of critical points is non-175

empty.176

We want to minimise E iteratively in a way that allows us to follow solution paths of177

different regularity. This regularity will be induced by an additional function J ∈ Γ0, where178
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Γ0 is defined in the appendix. Precisely, we approach the minimisation of E via the linearised179

Bregman iteration180

uk+1 = arg min
u∈Rn

{
τk〈∇E(uk), u− uk〉+Dpk

J (u, uk)
}
,(3.2a)181

pk+1 = pk − τk∇E(uk) ,(3.2b)182183

for k ∈ N, a sequence of positive parameters {τk}k∈N and initial values u0 and p0 with184

p0 ∈ ∂J(u0). Here ∂J denotes the subdifferential; we refer to the appendix for its definition.185

Note that (3.2b) is simply the optimality condition of (3.2a). If J is differentiable, ∂J is186

single-valued and we do not have to compute (3.2b) as we do not need to pick a specific187

element from the set. However, if ∂J is multivalued, (3.2) guarantees pk+1 ∈ ∂J(uk+1) for all188

k ∈ N. This general form of linearised Bregman iteration for the minimisation of non-convex189

functions is summed up in Algorithm 3.1.190

Remark 1. For J(u) = 1
2‖u‖

2, (3.2) (and therefore also Algorithm 3.1) reduces to classical191

gradient descent. Hence, the linearised Bregman iteration is indeed a generalisation of gradient192

descent.193

Based on what has become known as the Bregman iteration [27, 76, 36, 46, 65], the194

linearised Bregman iteration has initially been proposed in [33] for the computation of sparse195

solutions of underdetermined linear systems of equations. It has been extensively studied in196

this context (cf. [83, 25, 24]) and also in the context of the minimisation of more general197

convex functions (see [82]). It is also closely linked to (linearised variants of) the alternating198

direction method of multipliers (ADMM) [39], as well as generalisations to non-quadratic199

Bregman distances [79]. It has further been analysed in the context of non-linear inverse200

problems in [5]. In [10], the linearised Bregman iteration has been studied in the context of201

minimising general smooth but non-convex functions. Algorithm 3.1 allows us to control the202

scale of the iterates, depending on the choice of J . Note that we can also reformulate (3.2a)203

as follows:204

uk+1 = arg min
u∈Rn

{
τk
〈
∇E(uk)− 1

τk
pk, u− uk

〉
+ J(u)

}
.(3.3)205

206

In order to ensure that a solution of Update (3.3) (respectively (3.2a)) exists, we choose J207

such that J(u) + τk〈u∗, u〉 is coercive for all u∗ ∈ Rn. In particular, we choose J to be of the208

form Jk := 1
2‖ · ‖

2 + τkR, where R ∈ Γ0. For this choice the iterates (3.2) read as209

uk+1 = arg min
u∈Rn

{
τk
(
〈∇E(uk), u− uk〉+Dqk

R (u, uk)
)

+
1

2
‖u− uk‖2

}
,210

=
(
I + τk∂R

)−1 (
uk + τk

(
qk −∇E(uk)

))
,(3.4a)211

qk+1 = qk − 1

τk

(
uk+1 − uk + τk∇E(uk)

)
,(3.4b)212

213

for qk ∈ ∂R(uk). Note that (3.4b) can be written as214

qk+1 = q0 −
k∑

n=0

[
1

τn
(un+1 − un)

]
−

k∑
n=0

∇E(un) ,(3.5)215

216

This manuscript is for review purposes only.



8 M. BENNING, M. M. BETCKE, M. J. EHRHARDT , and C.-B. SCHÖNLIEB.

Algorithm 3.2 Specialised linearised Bregman iteration for minimising E

Initialise {τk}k∈N, u0 and q0 ∈ ∂R(u0)
for k = 0, 1, . . . do

Get uk+1 =
(
I + τk∂R

)−1 (
uk + τk

(
qk −∇E(uk)

))
Compute qk+1 = qk − 1

τk

(
uk+1 − uk + τk∇E(uk)

)
end for

and hence, for constant stepsize τk = τ (3.4a) simplifies to217

uk+1 = (I + τ∂R)−1
(
u0 + τq0 − τ

k∑
n=0

∇E(un)

)
.(3.6)218

219

Equations (3.4) are summarised in Algorithm 3.2. Note that both Algorithm 3.2 and Equation220

(3.6) demonstrate that this specialised linearised Bregman iteration is indeed different to221

proximal gradient descent, for which one iterate reads uk+1 = (I + τ∂R)−1
(
uk − τ∇E(uk)

)
.222

Instead, from Equation (3.4a) we observe that one computes a subgradient descent step in the223

direction of the subgradient of E − R, followed by an application of the proximal step with224

respect to R.225

In the following we prove decrease properties and a global convergence result for Algorithm226

3.2.227

4. A global convergence result for Algorithm 3.2. The convergence analysis is inspired228

by the global convergence recipe of [16]. It is an extension to a class of non-smooth surrogate229

functions for which a tailored convergence analysis is presented that utilises the convexity of230

R. We begin our analysis of Algorithm 3.2 by showing a sufficient decrease property of the231

surrogate function and a subgradient bound by the (primal) iterates gap. In order to do so,232

we first define the following surrogate function for E.233

Definition 4.1 (Surrogate objective). Assume E ∈ ΨL and R ∈ Γ0. Then we define a234

surrogate function F : Rn × Rn → R ∪ {∞} as235

F (x, y) := E(x) +R(x) +R∗(y)− 〈x, y〉.(4.1)236237

Here R∗ denotes the convex conjugate of R as defined in Definition A.3 in the appendix.238

Note that based on Remark 6 in the appendix, the surrogate function (4.1) satisfies239

F (x, y) := E(x) +Dy
R(x, z) ,240241

for any z ∈ ∂R∗(y), which implies F (x, y) ≥ E(x) for all x, y ∈ Rn. Before we continue,242

we want to introduce the concise notation sk := (uk, qk−1) for all k ∈ N, such that F (sk) =243

F (uk, qk−1). With the following lemma we prove a sufficient decrease property of the surrogate244

energy (4.1) for subsequent iterates.245

Lemma 4.2 (Sufficient decrease property). Assume E ∈ ΨL and R ∈ Γ0. Further, suppose246

that the stepsize τk satisfies the condition247

0 < τk ≤ 2

L+ 2ρ1
,(4.2)248

249
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for some ρ1 > 0 and all k ∈ N. Then the iterates of Algorithm 3.2 satisfy the descent estimate250

F (sk+1) + ρ1‖uk+1 − uk‖2 ≤ F (sk) ,(4.3)251252

for sk := (uk, qk−1) and F as defined in (4.1). In addition, we observe253

lim
k→∞

‖uk+1 − uk‖2 = 0 as well as lim
k→∞

Dsymm
R (uk+1, uk) = 0 .(4.4)254

255

256

Proof. First of all, we compute257

τk
(
∇E(uk) + qk+1 − qk

)
+ uk+1 − uk = 0258

259

as the optimality condition of (3.4a), which is also the rearranged update formula (3.4b) as260

mentioned earlier (for qk+1 ∈ ∂R(uk+1)). Taking the inner product with uk+1 − uk therefore261

yields262

−〈∇E(uk), uk+1 − uk〉 =
1

τk
‖uk+1 − uk‖2 +Dsymm

R (uk+1, uk) .(4.5)263
264

Due to the Lipschitz-continuity of the gradient of E we can use (A.4) from the appendix and265

further estimate266

E(uk+1) ≤ E(uk) + 〈∇E(uk), uk+1 − uk〉+
L

2
‖uk+1 − uk‖2 .267

268

Together with (4.5) and the stepsize bound (4.2) we therefore obtain the estimate269

E(uk+1) +Dsymm
R (uk+1, uk) + ρ1‖uk+1 − uk‖2 ≤ E(uk) .(4.6)270271

Adding Dqk−1

R (uk, uk−1) to both sides of the inequality then allows us to conclude272

F (sk+1) +Dqk+1

R (uk, uk+1) +Dqk−1

R (uk, uk−1) + ρ1‖uk+1 − uk‖2273

≤ F (sk) .274275

Due to the non-negativity of Dqk+1

R (uk, uk+1) and Dqk−1

R (uk, uk−1), we have verified (4.3).276

Moreover, summing up (4.6) over k = 0, . . . , N yields277

N∑
k=0

[
ρ1‖uk+1 − uk‖2 +Dsymm

R (uk+1, uk)
]
≤

N∑
k=0

E(uk)− E(uk+1) ,278

= E(u0)− E(uN+1) ,279

≤ E(u0)− inf
u
E(u) <∞ .280

281

Taking the limit N →∞ therefore implies282

∞∑
k=0

[
ρ1‖uk+1 − uk‖2 +Dsymm

R (uk+1, uk)
]
<∞ ,283

284

and thus (4.4), due to ρ1 > 0.285
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Remark 2. As Lemma 4.2 implies the monotonic decrease F (sk+1) ≤ F (sk), we already286

know that the sequence {F (sk)}k∈N is bounded from above. It is also bounded from below,287

since F (sk) ≥ E(uk) ≥ infuE(u) > −∞, due to E ∈ ΨL.288

It is worth mentioning that the name sufficient decrease can be misleading in the context of289

Algorithm 3.2 as it is not unusual for specific choices of R that the function value of E does290

not change for several iterations.291

Our next result is a bound for the subgradients of the surrogate energy at the iterates292

computed with Algorithm 3.2. Note that the subdifferential of the surrogate objective reads293

as294

∂F (x, y) =

{(
∇E(x) + z1 − y

z2 − x

) ∣∣∣∣ z1 ∈ ∂R(x), z2 ∈ ∂R∗(y)

}
,295

296

which can for example be deduced from [74]. With qk+1 ∈ ∂R(uk+1), and the fact that297

qk ∈ ∂R(uk) is equivalent to uk ∈ ∂R∗(qk) (Lemma A.4 in the appendix), we know that298

rk+1 :=

(
∇E(uk+1) + qk+1 − qk

uk − uk+1

)
∈ ∂F (uk+1, qk) = ∂F (sk+1) .(4.7)299

300

Subsequently, we want to show that the norm of this sequence of subgradients {rk}k∈N is301

bounded by the iterates gap of the primal variable.302

Lemma 4.3 (A subgradient lower bound for the iterates gap). Let the same assumptions303

hold true as in Lemma 4.2 and τk ≥ τmin := infk τ
k > 0. Then the iterates of Algorithm (3.2)304

satisfy305

‖rk‖ ≤ ρ2‖uk − uk−1‖ ,(4.8)306307

for rk ∈ ∂F (sk) as defined in (4.7), sk := (uk, qk−1), ρ2 :=
(
1 + L+ 1/τmin

)
and k ∈ N.308

Proof. From (4.7) we know309

‖rk‖ ≤ ‖∇E(uk) + qk − qk−1‖+ ‖uk − uk−1‖ .310311

Together with (3.4b) we therefore estimate312

‖rk‖ ≤
∥∥∥∇E(uk) + qk − qk−1

∥∥∥+ ‖uk − uk−1‖313

=

∥∥∥∥∇E(uk)−∇E(uk−1) +
1

τk−1

(
uk−1 − uk

)∥∥∥∥+ ‖uk − uk−1‖ ,314

≤
(

1 + L+
1

τmin

)
‖uk − uk−1‖ = ρ2‖uk − uk−1‖ ,315

316

where we have made use of the Lipschitz-continuity of the gradient of E.317

Remark 3. We want to point out that the Lipschitz-continuity of ∇E is not necessary if318

R ≡ 0. In that case it is easy to see that we can obtain the estimate319

‖∇E(uk)‖ ≤ 1

τmin
‖uk+1 − uk‖320

321
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instead of (4.8) (see also [10]), without the use of Lipschitz-continuity. For the sufficient322

decrease Theorem 4.2 it is already enough to choose τk such that G := 1
2‖ · ‖

2 − τkE is323

convex for all arguments and all k ∈ N. This observation has already been made and exploited324

in [6, 10, 17]. We also want to emphasise that the requirement of Lipschitz continuity can325

potentially be relaxed if backtracking strategies are incorporated into Algorithm 3.2.326

To conclude our convergence analysis we prove global convergence of Algorithm 3.2 with327

the help of the Kurdyka- Lojasiewicz (KL) property as defined in the appendix in Definition328

A.11. In order to apply the KL property, we have to verify some properties of the set of329

limit points. Let {sk}k∈N = {(uk, qk−1)}k∈N be a sequence generated by Algorithm 3.2 from330

starting points u0 and q0 with q0 ∈ ∂R(u0). The set of limit points is defined as331

ω(s0) :=

{
s = (u, q) ∈ Rn × Rn

∣∣∣∣ there exists an increasing sequence332

of integers {kj}j∈N such that lim
j→∞

ukj = u and lim
j→∞

qkj = q

}
.333

334

Before we continue, we want to emphasise that the current assumptions on E and R are not335

sufficient in order to guarantee convergence of the dual variable, which we want to demonstrate336

with a simple counter example.337

Remark 4. Let E(u) = (u+ 1)2/2, and R(u) = χ≥0(u) with338

χ≥0(u) :=

{
0 u ≥ 0

∞ u < 0
.339

340

It is obvious that E ∈ Ψ1 and that the only critical point of E is û = −1. However, Algorithm341

3.2 can never converge to that point but will converge to u = 0 due to the choice of R. This342

can be seen for instance for the choices u0 > 0, q0 = 0 and τk = 1. Then the subsequent343

iterates are uk = 0 and qk = u0 − k, thus, uk → 0 and qk → −∞.344

For convex, quadratic fidelity terms (such as E in the example above) it is sufficient to satisfy345

a source condition of the form ∂R(û) 6= ∅ (which in Remark 4 is clearly violated) in order346

to guarantee boundedness of the subgradients, see for instance [38]. For general, non-convex347

terms E it is not straight forward to adapt the concept of source conditions, which is why we348

are going to assume local boundedness of the subgradients instead.349

Definition 4.4 (Locally bounded subgradients). We say that R has locally bounded sub-350

gradients if for every compact set U ⊂ Rn there exists a constant C ∈ (0,∞) such that for all351

v ∈ U and all q ∈ ∂R(v) we have ‖q‖ ≤ C.352

Boundedness is not a very restrictive requirement as it is for instance satisfied for the large353

class of Lipschitz-continuous functions.354

Proposition 4.5. Let R ∈ Γ0 be a (globally) Lipschitz continuous function in the sense of355

Definition A.7 in the appendix. Then R has locally bounded subgradients.356
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Proof. From the convexity of R we observe357

〈q, h〉 ≤ |R(v + h)−R(v)| ≤ L‖h‖ ,358359

for any U ⊂ Rn and any h, v ∈ U with v + h ∈ U and q ∈ ∂R(v). Taking the supremum over360

h with ‖h‖ ≤ 1 shows ‖q‖ ≤ L, which proves the assertion.361

Remark 5. Note that every continuously differentiable function is already locally Lipschitz-362

continuous, and therefore has locally bounded gradients according to Proposition 4.5.363

Before we show global convergence of Algorithm 3.2 to a critical point of E, we need to364

verify that the surrogate function converges to E on ω(s0), that ω(s0) is a non-empty, compact365

and connected set and that its primal limiting points form a subset of the set of critical points366

of E. The following lemma guarantees that for a sequence converging to a limit point we also367

know that the surrogate objective converges to the objective evaluated at this limit point.368

Lemma 4.6. Suppose E ∈ ΨL, R ∈ Γ0, and let s ∈ ω(s0). Then we already know369

lim
k→∞

F (sk) = F (s) = E(u) .(4.9)370
371

372

Proof. Since s is a limit point of {sk}k∈N we know that there exists a subsequence {skj}j∈N373

with limj→∞ s
kj = s. Hence, we immediately obtain374

lim
j→∞

F (skj ) = lim
j→∞

{
E(ukj ) +Dqkj−1

R (ukj , ukj−1)
}

= E(u) ,375
376

due to the continuity of E and limj→∞D
qkj−1

R (ukj , ukj−1) = 0 as a result of Lemma 4.2. Since377

{F (sk)}k∈N is also monotonically decreasing and bounded from below according to Remark378

2, we can further conclude (4.9) as a consequence of the monotone convergence theorem.379

In addition to Lemma 4.6, the following lemma states that ω(s0) is a non-empty, compact380

and connected set, and that the objective F is constant on that set.381

Lemma 4.7 ([16, Lemma 5]). Suppose E ∈ ΨL and that R ∈ Γ0 has locally bounded382

subgradients. Then the set ω(s0) is a non-empty, compact and connected set, the surrogate383

objective F is constant on ω(s0) and we have limk→∞ dist(sk, ω(s0)) = 0.384

We can further verify that the set of primal limiting points is a subset of the set of critical385

points of the energy E.386

Lemma 4.8. Suppose E ∈ ΨL, and that R ∈ Γ0 has locally bounded subgradients. Then we387

have u ∈ crit(E) for every s = (u, q) ∈ ω(s0).388

Proof. We prove this assertion by contradiction to the boundedness of the subgradients.389

Let s := (u, q) ∈ ω(s0), which means limk→∞ u
k = u. Assume that ∇E(u) 6= 0 and let390

c := ‖∇E(u)‖ > 0. It follows from the subgradient update (3.5) and the reverse triangle391

inequality ‖a+
∑

i ai‖ ≥ ‖a‖ −
∑

i ‖ai‖ that392

‖qk‖ ≥

∥∥∥∥∥
k−1∑
n=0

∇E(u)

∥∥∥∥∥− ‖q0‖ −
k−1∑
n=0

[
1

τn
‖un+1 − un‖+ ‖∇E(un)−∇E(u)‖

]
.393

394
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As uk → u, there exists K ∈ N such that for all n ≥ K the bounds ‖un − u‖ ≤ cτmin/8 and
‖∇E(un)−∇E(u)‖ ≤ c/4 hold. Thus, we have for all n ≥ K that

1/τn‖un+1 − un‖+ ‖∇E(un)−∇E(u)‖ ≤ c/2,

and therefore395

k−1∑
n=0

[
1

τn
‖un+1 − un‖+ ‖∇E(un)−∇E(u)‖

]
396

≤
k−1∑
n=K

[
1

τn
‖un+1 − un‖+ ‖∇E(un)−∇E(u)‖

]
+ const ≤ kc/2 + const,397

398

for all k ∈ N, with a constant independent of k. Combining these two estimates yields399

‖qk‖ ≥

∥∥∥∥∥
k−1∑
n=0

∇E(u)

∥∥∥∥∥− kc/2 + const = kc/2 + const .400

401

Hence, we observe limk→∞ ‖qk‖ = ∞, which is a contradiction to the boundedness of {qk}.402

Thus, ∇E(u) = 0, which means u ∈ crit(E).403

Now we have all the necessary ingredients to show the following global convergence result404

for Algorithm 3.2.405

Theorem 4.9 (Finite length property). Suppose that F is a KL function in the sense of406

Definition A.11. Further, assume R ∈ Γ0 with locally bounded subgradients. Let {sk}k∈N =407

{(uk, qk−1)}k∈N be a sequence generated by Algorithm 3.2. Then the sequence {uk}k∈N has408

finite length, i.e.409

∞∑
k=0

‖uk+1 − uk‖ <∞ .(4.10)410

411
412

Proof. We follow the steps of the proof of [16, Theorem 1] but with non-trivial modifica-413

tions.414

The sequence {uk}k∈N is bounded, which follows from the assumption E ∈ ΨL and the
monotonic decrease. Thus, we know that there exists a convergent subsequence {ukj}j∈N and
u ∈ Rn with

lim
j→∞

ukj = u .

As a consequence of Lemma 4.6 we further know that limk→∞ F (sk) = F (s) = E(u). If
there exists an index l ∈ N with F (sl) = E(u) the results follow trivially. If there does not
exist such an index, we observe that for any η > 0 there exists an index k1 such that

E(u) < F (sk) < E(u) + η

for all k > k1. In addition, for any ε > 0 there exists an index k2 with

dist(sk, ω(s0)) < ε
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for all k > k2, due to Lemma 4.7. Hence, if we choose l := max(k1, k2), we know that uk is in415

the set (A.5) for all k > l according to Lemma A.12 in the appendix.416

By Lemma 4.7, ω(u0) satisfies all the assumptions of Lemma A.12 and we have417

1 ≤ ϕ′(F (sk)− E(u)) dist(0, ∂F (sk))(4.11)418419

for all k > l. This inequality makes sense due to F (sk) > E(u) for all k.420

From the concavity of ϕ we know that421

ϕ′(x) ≤ ϕ(x)− ϕ(y)

x− y
422
423

holds for all x, y ∈ [0, η), x > y, which we will use for the specific choices of x = F (wk)−E(u)
and y = F (sk+1)− E(u). Combining the latter with Lemma 4.2 and abbreviating

ϕk := ϕ(F (sk)− E(u))

yields424

ϕ′(F (sk)− E(u)) ≤ ϕk − ϕk+1

F (sk)− F (sk+1)
≤ ϕk − ϕk+1

ρ1‖uk+1 − uk‖2
.(4.12)425

426

Inserting (4.12) and the subgradient bound (4.8) into the KL inequality (4.11) leads to427

‖uk+1 − uk‖2 ≤ ρ2
ρ1

(ϕk − ϕk+1)‖uk − uk−1‖ .428
429

Taking the square root, multiplying by 2 and using Young’s inequality of the form 2
√
ab ≤430

a+ b then yields431

2‖uk+1 − uk‖ ≤ ρ2
ρ1

(ϕk − ϕk+1) + ‖uk − uk−1‖ .432
433

Subtracting ‖uk+1 − uk‖ and summing from k = l, . . . , N leads to434

N∑
k=l

‖uk+1 − uk‖ ≤ ρ2
ρ1

(ϕl − ϕN+1) + ‖ul − ul−1‖ − ‖uN+1 − uN‖435

≤ ρ2
ρ1
ϕl + ‖ul − ul−1‖ <∞ ,436

437

and hence, we obtain the finite length property by taking the limit N →∞.438

Corollary 4.10 (Convergence). Under the same assumptions as Theorem 4.9, the sequence439

{uk}k∈N converges to a critical point of E.440

Proof. As in the proof of [16, Theorem 1 (ii)], the finite length property Theorem 4.9441

implies
∑N

k=l ‖uk+1 − uk‖ → 0 for N →∞. Thus, for any s ≥ r ≥ l we have442

‖us − ur‖ =

∥∥∥∥∥
s−1∑
k=r

uk+1 − uk
∥∥∥∥∥ ≤

s−1∑
k=r

‖uk+1 − uk‖ ≤
∞∑
k=l

‖uk+1 − uk‖ .443

444

This shows that {uk}k∈N is a Cauchy sequence and, thus, is convergent. According to Lemma445

4.8 its limit is a critical point of E.446
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4.1. Global convergence in the absence of locally bounded subgradients. In the pre-447

vious section we have made the assumption that the subgradients of R have to be locally448

bounded in order to guarantee convergence of the primal iterates to a critical point of E. In449

Remark 4 we have seen an example for which the subgradients of R diverge, but the primal450

iterates still converge, just not to a critical point of E. This leaves us with two open questions:451

1) could we prove convergence of the primal iterates without boundedness of the dual iterates452

and 2) would the limit (if it exists) be a critical point of some other energy? It might be453

possible to answer the first question by slightly modifying Definition A.11 and Lemma A.12454

in the appendix, as well as Lemma 4.7 to accommodate the fact that the surrogate function455

is also constant on the set of limiting points that only depends on the primal variable (which456

we denote by ω(u0) for convenience). A potential modification of (A.5) in Lemma 4.7 could457

for instance be458

{u, q ∈ Rn | dist(u, ω(u0)) < ε} ∩ {u, q ∈ Rn |E(u) ≤ F (u, q) ≤ E(u) + η} ,459460

where u ∈ ω(u0). Note that this modification would not affect the finite length proof of461

Theorem 4.9 and therefore would still imply global convergence, but not necessarily to a462

critical point of E. Remark 4 leaves room for speculation whether an answer to the second463

question is that the primal iterates converge to a critical point of E +χdom(R), where χdom(R)464

denotes the characteristic function over the effective domain of R. Proving this, however, is465

beyond the scope of this paper.466

4.2. Limitations of the convergence analysis and possible remedies. The convergence467

analysis presented in this paper relies on the fact that the function E satisfies E ∈ SL,468

which is often restrictive for practical applications. Even simple functions such as the blind469

deconvolution data fidelity term from Section 2 are not globally L-smooth. Remedies are the470

use of an alternating version of Algorithm 3.2 in the spirit of [16] and to make use of local471

smoothness of the functions with fixed variables. For two variables u1 and u2, such a scheme472

is of the form473

uk+1
1 = arg min

u1∈Rn

{
τk1 〈∇1E(uk1, u

k
2), u1 − uk1〉+D

pk1
J1

(u1, u
k
1)
}

474

pk+1
1 = pk1 − τk1∇1E(uk1, u

k
2) ,475

uk+1
2 = arg min

u2∈Rn

{
τk2 〈∇2E(uk+1

1 , uk2), u2 − uk2〉+D
pk2
J2

(u2, u
k
2)
}

476

pk+1
2 = pk2 − τk2∇2E(uk+1

1 , uk2) ,477478

assuming a separable structure of J(u1, u2) = J1(u1) + J2(u2). Here ∇1 and ∇2 refer to the479

partial gradients of E with respect to u1 and u2, and pk1 ∈ ∂J1(u
k
1) and pk2 ∈ ∂J2(u

k
2) are480

subgradients in the subdifferential of J1 and J2, respectively. The analysis of such a scheme481

should be relatively straight-forward, but is beyond the scope of this work.482

Another limitation in terms of convergence analysis that becomes obvious from the moti-483

vating example in Section 2 is the use of characteristic functions. If we incorporate them in484

the function R, we run into the issues outlined in Section 4.1. If we add them to the objective485

function E, we lose the continuity and differentiability. A remedy for the blind deconvolu-486

tion example (and many similar examples) in Section 2 is that for the convolution kernel the487
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additional Bregman function R is simply zero, so that the algorithm merely has to perform488

a proximal point step in the direction of the convolution kernel. The convergence analysis489

in such a setting is straight-forward, but we did not include it in order not to complicate490

notation. Alternatively, one could replace the characteristic function with its Moreau–Yosida491

envelope.492

This concludes the theoretical analysis of Algorithm 3.2. In the following two sections493

we are going to discuss three applications, their mathematical modelling in the context of494

Algorithm 3.2 and their numerical results.495

5. Applications. We demonstrate the capabilities of the linearised Bregman iteration by496

using it to approximately minimise several non-convex minimisation problems. We say ap-497

proximately, as we do not exactly minimise the corresponding objective functions, but rather498

compute iteratively regularised solutions to the associated inverse problems via early stopping499

of the iteration.500

5.1. Parallel Magnetic Resonance Imaging. In (standard) Magnetic Resonance Imaging501

(MRI) the goal is to recover the spin-proton density from sub-sampled Fourier measurements502

that were obtained with a single radio-frequency (RF) coil. In parallel MRI, multiple RF coils503

are used for taking measurements, thus allowing to recover the spin-proton density from more504

measurements compared to the standard case. This, however, comes at the cost of having to505

model the sensitivities of the individual RF coils w.r.t. the measured material. We basically506

follow the mathematical modelling of [70, 77] and describe the recovery of the spin-proton507

density and the RF coil sensitivities as the minimisation of the following energy function:508

E(u, b1,. . ., bs) :=
1

2

s∑
j=1

‖S(F((K(u, b1,. . ., bs))j))−fj‖22+
ε

2

‖u‖2 +
s∑
j=1

‖bj‖2
.(5.1)509

510

Here F ∈ Cn×n is the (discrete) Fourier transform, S ∈ {0, 1}m×n is a sub-sampling operator,511

K is the non-linear operator K(u, b1, . . . , bs) = (ub1, ub2, . . . , ubs)
T , u denotes the spin-proton512

density, b1, b2, . . . , bs the s coil sensitivities, f1, . . . , fs the corresponding sub-sampled k-space513

data and ε > 0 is a scalar parameter that ensures bounded level-sets of E. Since C has the514

same topology as R × R, we can formally treat all variables as variables in R2n. Note that515

E as defined in (5.1) is not globally L-smooth, which is why we also assume that we choose516

parameters and initial values such that our sequence {uk}k∈N of primal variables generated517

by Algorithm 3.2 satisfies518

‖∇E(uk)−∇E(uk−1)‖2 ≤ Lk‖uk − uk−1‖2 ,519520

for a sequence {Lk}k∈N of positive constants. Hence, E ∈ ΨLk , which means that E is (locally)521

Lk-smooth, respectively ∇E is (locally) Lk-Lipschitz-continuous in the sense of Definition A.7.522

Furthermore, we assume that the sequence {Lk}k∈N is bounded from above, i.e. Lk ≤ L for523

all k ∈ N, and consequently E ∈ ΨL. It is not necessarily straight-forward to prove existence524

of L a-priori, but it is relatively easy to validate it a-posteriori. Note that, alternatively, one525

could use an alternating version of Algorithm 3.2 as discussed in Section 4.2.526
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The inverse problem of parallel MRI has been subject in numerous research publications527

[71, 48, 12]. We follow a different methodology here and apply Algorithm 3.2 to approximately528

minimise (5.1) with the following configuration. We choose the function R to be of the form529

R(u, b1, . . . , bs) = R1(u) +

s∑
j=1

R2(bj) ,530

531

with532

R1(u) = α0TV(u) = α0‖|∇u|‖1533534

and535

R2(bj) = αj

n∑
l=1

wl |(C bj)l| , ∀j ∈ {1, . . . , s} .536

537

Here ∇ denotes a discrete finite forward difference approximation of the gradient, | · | is the538

Euclidean vector norm, C denotes the discrete two-dimensional cosine transform, {wl}l∈{1,...,n}539

is a set of weighting-coefficients and α0, . . . , αs+1 are positive scaling parameters. Note that540

all functions are chosen to be semi-algebraic, and semi-algebraic functions and their additive541

compositions are KL functions (see [2, 3, 4]). Iterating Algorithm 3.2 for too long may lead542

to unstable minimisers of (5.1) in case the k-space data f1, . . . , fs are noisy, which is why543

we are going to apply Morozov’s discrepancy principle [60] as a stopping criterion to stop544

the iteration early (see also [65, 40, 56], and [75, 5, 45] in the context of nonlinear inverse545

problems), i.e. we stop the iteration as soon as546

E(u, b1, . . . , bs) ≤ η(5.2)547548

is satisfied, for some η > 0. Usually η depends on the variance of the normal-distributed noise.549

5.2. Blind deconvolution. Blind deconvolution is extensively discussed in the literature,550

e.g. [49, 30, 26] and the references therein, with several approaches for which the convergence551

proofs also rely on the KL inequality [15, 72, 32]. We follow the same setting as in Section 2552

(with additional regularisation as in (5.1) in order to guarantee bounded level-sets) and make553

the assumptions that the blur-free image u has low total variation and that the kernel h satisfies554

a simplex constraint, i.e. all entries are non-negative and sum up to one. The assumption of555

low total variation can for instance be motivated by [31], but as as we have seen in Section556

2, minimising E with some additional total variation regularisation does often not lead to557

visually satisfactory results. We therefore apply Algorithm 3.2 with R : Rn×Rr → R defined558

as559

R(u, h) = αTV(u) ,560561

for α ≥ 0. All functions are semi-algebraic, and we make the same local smoothness assump-562

tion as in Section 5.1. In case of noisy data, we will proceed as in Section 5.1 and stop the563

iteration via the discrepancy principle.564
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5.3. Classification. The last application that we want to discuss is the classification of565

images. Given a set D ∈ Rs×r of r training images (with s pixel each) in column vector566

form, we want to train a neural network to classify those images. We do so by learning the567

parameters (A1, . . . , Al) of the l-layer neural network568

ρ(x) := ρ1(A1ρ2(A2 . . . ρl(Alx)) . . .)569570

in a supervised fashion. Here the parameters Aj ∈ Rmj×nj are matrices of different size, and571

the functions {ρj}lj=1 are so-called activity functions of the neural net. Typical choices for572

activity functions are max- and min-functions, also known as rectifier. However, due to their573

non-differentiability it is common to approximate them with either the pointwise smooth-574

max-function, i.e.575

ρj(x, c, β) :=
x exp(βx) + c exp(βc)

exp(βx) + exp(βc)
,576

577

for x ∈ R and constants β,∈ R, or the soft-max-function, i.e.578

ρj(x)i =
exp(xi)∑m
l=1 exp(xl)

,579
580

for x ∈ Rm. The latter has the advantage that the function output automatically satisfies the581

simplex constraint.582

Note that if each function ρj(Ajx) is chosen to be semi-algebraic, the composition ρ is583

also semi-algebraic, see [1, Proposition 2.2.10]. If we choose ρj(y) := min(1,max(0, y)) for all584

j ∈ {1, . . . , l} for instance, we can then show that also ρ is semi-algebraic.585

Defining a nonlinear operator K(A1, A2, . . . , Al) := ρ1(A1ρ2(A2 . . . ρl(AlD)) . . .) for a given586

matrix D and a given label matrix Y ∈ Rm1×r, we aim to minimise587

E(A1, A2, . . . , Al) := D(K(A1, A2, . . . , Al), Y ) +
ε

2

l∑
j=1

‖Aj‖2Fro ,(5.3)588

589

where D : Rm1×r × Rm1×r → R denotes a function that measures the distance between its590

arguments in some sense. Our choice for D is simply the squared Frobenius norm D(X,Y ) =591
1
2‖X − Y ‖2Fro but other choices are possible. As mentioned earlier, the whole objective E592

can be made a KL function, if for instance D and ρ are chosen to be semi-algebraic, as their593

composition will also be semi-algebraic.594

As in the previous sections, we aim to minimise (5.3) with Algorithm 3.2 and make595

the same local smoothness assumption as before. This time we choose R(A1, . . . , Al) =596 ∑l
j=1 αj‖Aj‖∗. Here {αj}lj is a set of positive scaling parameters, and ‖X‖∗ :=

∑rank(X)
i=1 σi is597

the one norm of the singular values {σi}rank(X)
i=1 of the argument X, also known as the nuclear598

norm. The rationale behind this choice for R is that we can create iterates where the ranks of599

the individual matrices are steadily increasing. This way we control the number of effective600

parameters and do not fit all parameters right from the start.601
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(a) Fully sampled (b) Recon. from 5.1a (c) Recon. from 5.1a

(d) Subsampled (e) Recon. from 5.1d (f) Recon. from 5.1d
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(g) Convergence plot from 5.1a
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(h) Convergence plot from 5.1d

Figure 5.1. Figure 5.1a shows a log-plot of the modulus of the fully sampled k-space data of the first
coil taken from [48]. Figure 5.1b shows the reconstruction of the spin proton density from the data visualised
in Figure 5.1a via gradient descent, whereas Figure 5.1c shows the reconstruction of the spin proton density
from the same data but via Algorithm 3.2. In Figure 5.1d we see roughly 25 % of the k-space data visualised in
Figure 5.1a, sampled on a spiral on a cartesian grid [11]. Figure 5.1e shows the reconstruction of the spin proton
density from this subsampled k-space data with gradient descent, while Figure 5.1f shows the reconstruction of
the spin proton density from the same data but with Algorithm 3.2. Figure 5.1g and Figure 5.1h are showing
the convergence plots in terms of energy decrease per iteration for the reconstructions that are obtained from
the k-space data shown in Figure 5.1a, respectively in Figure 5.1d.
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(a) First coil (b) Second coil (c) Third coil (d) Fourth coil

(e) First coil (f) Second coil (g) Third coil (h) Fourth coil

0π

Figure 5.2. Figure 5.2a - 5.2d show the reconstructions of the coil sensitivities from the fully sampled data.
Figure 5.2e - 5.2h show the reconstructions of the same quantities from the sub-sampled data.

6. Numerical Results. We demonstrate the particular properties and idiosyncrasies of602

Algorithm 3.2 by computing several numerical solutions to the problems described in Section603

5. All results have been computed with MATLAB R2017b. The code for the following604

examples is available at https://doi.org/10.17863/CAM.16931 and can be used under the605

Creative Commons Attribution (CC BY) license once the article is accepted for publication.606

Notably, all regularisation parameters that ensure boundedness of the level-sets are set607

to the smallest possible value (ε = machine accuracy) in practice. Since we do not use608

explicit Lipschitz constants, we employ a näıve backtracking strategy for the variable stepsize609

{τk}k∈N. We start with an initial stepsize τ0 > 0 and check after each iteration whether610

E(uk+1) ≤ E(uk) + ε is satisfied. Here, ε > 0 is a small constant that accounts for numerical611

rounding errors that may cause E(uk+1) > E(uk) when E(uk+1) ≈ E(uk). If the decrease is612

satisfied, we set τk+1 = τk; otherwise we set τk+1 = (3τk)/4 and backtrack again until we613

get a decrease. We want to emphasise that more sophisticated backtracking approaches can614

be used; we found, however, that the näıve strategy that we use already works well for the615

computational results shown in the following subsections.616

6.1. Parallel MRI. We compute parallel MRI reconstructions from real k-space data. We617

use data from a T2-weighted TSE scan of a transaxial slice of a brain acquired with a four-618

channel head-coil in [47]. A reconstruction from fully sampled data is taken as a ground truth.619

The spiral sub-sampling is simulated by point-wise multiplication of the k-space data with the620

spiral pattern visualised in Figure 5.1d. We initialise with u0 = 2×165536×1 and b0j = 165536×1621

for j ∈ {1, . . . , 4}, and compute a q0 ∈ ∂R(u0).622

With the parameters αj = 1 for all j ∈ {0, . . . , s}, τ0 = 1/2, w1 = w2 = w√n+1 =623
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(a) Original image (b) Noisy, blurred image

(c) α = 0.1 (d) α = 10−3

Figure 6.1. Figure 6.1a shows an image of Pixel the Gambian pouched rat. Figure 6.1b shows a motion-
blurred version of that image, together with some added normal distributed noise. The corresponding convolution
kernel is depicted in the bottom left corner. Figure 6.1c visualises the reconstruction of the image and the
convolution kernel with Algorithm 3.2 for the choice α = 10−1. Figure 6.1d show the reconstructions of
the same quantities for the choice α = 10−3. We clearly see that a larger choice of α results in a regular
solution, whereas a smaller α will mimic traditional gradient descent with almost no additional regularity of the
reconstruction.

w√n+2 = 10−6 and wl = 5 for l ∈ {1, . . . , n} \ {1, 2,
√
n+ 1,

√
n+ 2}, and η = 3.45 we obtain624

the spin proton density reconstruction visualised in Figure 5.1c, as well as the coil sensitivity625

reconstructions in Figure 5.2a - 5.2d. In Figure 5.1f and Figure 5.2e - 5.2h we show the results626

of the reconstructions from sub-sampled data using the sub-sampling scheme in Figure 5.1d.627

6.2. Blind deconvolution. To simulate blurring of a gray-scale image forig ∈ R424×640 we628

subtract its mean, normalise it and subsequently blur forig with a motion-blur filter h ∈ R9×31.629

The filter was obtained with the MATLAB©-command fspecial(’motion’, 30, 15), and630

we assume periodic boundary conditions for the blurring process. Subsequently we add nor-631

mally distributed noise with mean zero and standard deviation σ = 10−4 to obtain a blurry632

and noisy image f with ground truth forig. Both forig and f , as well as h are visualised in633
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(a) MNIST [51]
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Figure 6.2. Figure 6.2a shows ten randomly chosen images of each digit from the MNIST training data
[51]. Figure 6.2b shows the successful prediction rate of the classifier throughout the iteration both for the
training and the test data. Figure 6.2c shows the rank of the two matrices U1 and U2 that are reconstructed. It
becomes evident that the rank is monotonically increasing throughout the course of the iteration, allowing the
model to fit only a reduced no. of effective parameters at a time.

Figure 6.1.634

We use f as our input image for Algorithm 3.2. We initialise Algorithm 3.2 with u0 = 0635

and q0 = 0. We choose h0 = 1/(r2) × 1r×r for r = 35 to ensure that h0 satisfies the simplex636

constraint. We set τ0 = 2 and pick α ∈ {10−1, 10−3}. We then iterate Algorithm 3.2 until637

the discrepancy principle is violated for η = (1.2σ2)/(2
√

424× 640). The inner total variation638

sub-problem is solved with the primal-dual hybrid gradient method [84, 67, 37, 28, 29]. The639

results are visualised in Figure 6.1.640

6.3. Classification. We test the proposed framework for the classification of images of641

hand-written digits. We use the well-known MNIST dataset [51] as the basis for our classifi-642

cation. Ten example images of each class are visualised in Figure 6.2a. We pick 50000 images643

from the training dataset to create our training data matrix D, and use the remaining 10000644

for cross validation. We model our classifier as a two-level neural network as described in645

Section 5.3. We choose the original rectifier activation functions for the networks’ architec-646

ture, in order to ensure that the composition is semi-algebraic and that the KL condition is647

satisfied. We overcome the non-differentiability by setting the derivatives to zero at the non-648

differentiable points. This is consistent with the smooth-max approximation of the rectifier649

for β →∞. We choose E to be the squared Frobenius norm and set the scaling parameters to650

α1 = α2 = 0.2. The stepsize τ0 is initialised with τ0 = 10−3. Subsequently, we run Algorithm651

3.2 for 10000 iterations. The prediction results of the classifier and the rank of the trained652

matrices are visualised in Figure 6.2.653

7. Conclusions & Outlook. We have presented a generalisation of gradient descent that654

allows the incorporation of non-smooth Bregman distances, and therefore can also be seen655

as an extension of the linearised Bregman iteration to non-convex functions. We have shown656

that the proposed method satisfies a sufficient decrease property and that the computed sub-657

gradients are bounded by the gap of the primal iterates. We have proven a global convergence658

result, where the limit is guaranteed to be a critical point of the energy if the subgradients659

are locally also bounded. The numerical experiments suggest that the proposed method to-660

This manuscript is for review purposes only.



CHOOSE YOUR PATH WISELY 23

gether with early stopping can be designed to obtain solutions superior to those attained with661

conventional variational regularisation methods.662

There are several open questions and natural directions that can be explored from here.663

One could extend the method to more general proximal mappings, as demonstrated in an664

earlier preprint. One could also study a linearised block coordinate variant of the proposed665

method, which would be similar in analysis to [80, 16]. In the wake of [63, 68], a generalisation666

of the proposed method could include inertial terms (or even multi-step inertial terms as in667

[53]), or Nesterov acceleration as in [43]. Both approaches seem intuitive for accelerating the668

method. Another direction that can be explored is the direction of non-smooth quasi-Newton669

extensions similar to [9]. Motivated by applications in deep learning, one could also follow up670

on incremental or stochastic variants of the proposed algorithm (cf. [44, 34, 14]). As we have671

used early stopping in our practical experiments, an interesting open question is whether the672

linearised Bregman iteration is a regularisation method, and if so, in what sense. This has673

been partially addressed in [5], but under more restrictive assumptions. Following diagonal674

iterative regularisation approaches, an interesting open question is also if the concept of [40]675

can be combined with the linearised Bregman iteration for non-convex problems.676
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tailed informations about these concepts can be found in various textbooks, such as [73, 8].869

We frequently use functions that are proper, lower semi-continuous and convex, and therefore870

define the following set of functions:871

Γ0 := {J : Rn → R ∪ {∞} | J is proper, lower semi-continuous and convex} .872873

Here proper means that the effective domain of J is not empty. The effective domain of J is874

defined as follows.875

Definition A.1 (Effective domain). The effective domain of a function J : Rn → R ∪ {∞}876

is defined as877

dom(J) := {u ∈ Rn | J(u) <∞} .878879

Convex and proper functions are not necessarily differentiable, but subdifferentiable. We880

therefore want to recall the definition of subgradients and the subdifferential of a convex881

function.882

Definition A.2 (Subdifferential). Let J ∈ Γ0. The function J is called subdifferentiable at883

u ∈ Rn, if there exists an element p ∈ Rn such that884

J(v) ≥ J(u) + 〈p, v − u〉885886

holds, for all v ∈ Rn. Furthermore, we call p a subgradient at position u. The collection of887

all subgradients at position u, i.e.888

∂J(u) := {p ∈ Rn | J(v) ≥ J(u) + 〈p, v − u〉 , ∀v ∈ Rn} ,889890

is called subdifferential of J at u.891

Another useful concept that we want to recall is the concept of Fenchel-, respectively convex-892

conjugates.893

Definition A.3 (Convex conjugate). Let J ∈ Γ0. Then its convex conjugate J∗ : Rn →894

R ∪ {∞} is defined as895

J∗(p) := sup
u∈Rn

{〈u, p〉 − J(u)} ,896
897

for all p ∈ Rn.898

Amongst others, subgradients of convex conjugates satisfy the following two useful properties.899

Lemma A.4. Let J ∈ Γ0, and J∗ denote the convex conjugate of J . Then for all arguments900

u ∈ Rn with corresponding subgradients p ∈ ∂J(u) we know901

• 〈u, p〉 = J(u) + J∗(p),902

• p ∈ ∂J(u) is equivalent to u ∈ ∂J∗(p).903

Bregman distances, introduced by Lev Bregman in 1967 (see [20]), play a vital role in904

the definition as well as in the convergence analysis of the linearised Bregman iteration for905

non-convex functions. We recall its generalised variant for subdifferentiable functions [46].906
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Definition A.5 (Bregman distance). Let J ∈ Γ0. Then the generalised Bregman distance907

for a particular subgradient q ∈ ∂J(v) is defined as908

Dq
J(u, v) := J(u)− J(v)− 〈q, u− v〉 ,(A.1)909910

for v ∈ dom(J) and all u ∈ Rn.911

Remark 6. Based on Lemma A.4 we can rewrite (A.1) as follows:912

Dq
J(u, v) = J(u) + J∗(q)− 〈u, q〉 .(A.2)913914

Noticeable, the Bregman distance does not depend on v anymore, and could therefore be defined915

as a function of u and q only, DJ(u, q), via (A.2) instead.916

Bregman distances are not symmetric in general; however, they satisfy a dual symmetry917

Dq
J(u, v) = Du

J∗(q, p) for arguments u ∈ Rn, v ∈ dom(J) and subgradients p ∈ ∂J(u) and918

q ∈ ∂J(v). Symmetry can nevertheless be achieved by simply adding two Bregman distances919

with interchanged arguments. The name symmetric Bregman distance goes back to [23].920

Definition A.6 (Symmetric Bregman distance). Let J ∈ Γ0. Then the symmetric generalised921

Bregman distance Dsymm
J (u, v) is defined as922

Dsymm
J (u, v) := Dq

J(u, v) +Dp
J(v, u) = 〈p− q, u− v〉 ,923924

for u, v ∈ dom(J) with p ∈ ∂J(u) and q ∈ ∂J(v).925

Another concept that we exploit is Lipschitz-continuity of the gradient of a function. For926

general operators, Lipschitz-continuity is defined as follows.927

Definition A.7 (Lipschitz-continuity). An operator F : U ⊂ Rn → Rm is said to be (glob-928

ally) Lipschitz-continuous if there exists a constant L ≥ 0 such that929

‖F (u)− F (v)‖ ≤ L‖u− v‖(A.3)930931

is satisfied for all u, v ∈ U .932

Due to the importance of Lipschitz-continuous gradients, we define the following class of933

continuously differentiable functions with Lipschitz-continuous gradient:934

Definition A.8 (Smoothness). A function J : U ⊂ Rn → R is called L-smooth if it is935

differentiable and its gradient ∇J : U → Rn is Lipschitz-continuous with Lipschitz constant936

L. The set of all L-smooth functions is therefore denoted by SL with937

SL :=

{
J : U → R

∣∣∣∣ J is continuously differentiable
∇J is L-Lipschitz-continuous

}
.938

939

Note that it is a well-known fact that L-smooth functions satisfy the Lipschitz estimate940

J(u) ≤ J(v) + 〈∇J(v), u− v〉+
L

2
‖u− v‖22 ,(A.4)941

942

for all u, v ∈ U . Note that if U = Rn then J is already globally L-smooth and this estimate943

is true for all arguments u, v ∈ Rn.944

In the following we recall the definition of the proximal mapping.945
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Definition A.9 (Proximal mapping [58, 59]). We define the proximal mapping as the oper-946

ator (I + ∂J)−1 : Rn → dom(J) with947

(I + ∂J)−1(f) := arg min
u∈dom(J)

{
1

2
‖u− f‖2 + J(u)

}
,948

949

for all arguments f ∈ Rn.950

To conclude this section, we want to recall the Kurdyka- Lojasiewicz (KL) property [55, 50].951

For the definition of the KL property we need to define a distance between sub-sets and952

elements of Rn first.953

Definition A.10. Let Ω ⊂ Rn and u ∈ Rn. We define the distance from Ω to u as954

dist(u,Ω) :=

{
inf{‖v − u‖ | v ∈ Ω} Ω 6= ∅
∞ Ω = ∅

.955

956

The definition of the KL property based on the distance measure defined in Definition A.10957

reads as follows.958

Definition A.11 (Kurdyka- Lojasierwicz property). A function J is said to have the Kurdyka-959

 Lojasierwicz (KL) property at u ∈ dom(∂J) := {u ∈ Rn | ∂J(u) 6= ∅} if there exists a constant960

η ∈ (0,∞], a neighbourhood Θ of u and a function ϕ : [0, η) → R>0, which is a concave961

function that is continuous at 0 and satisfies ϕ(0) = 0, ϕ ∈ C1((0, η)) and ϕ′(s) > 0 for all962

s ∈ (0, η), such that for all u ∈ Θ ∩ {u ∈ Rn | J(u) < J(u) < J(u) + η} the inequality963

ϕ′ (J(u)− J(u)) dist(0, ∂J(u)) ≥ 1(KL)964965

holds.966

If J satisfies the KL property at each point of dom(∂J), J is called a KL function.967

We conclude the appendix by recalling one important result from [16] that is necessary for968

successfully carrying out the convergence proof in the main part of the paper.969

Lemma A.12 (Uniformised KL property [16, Lemma 6]). Let Ω be a compact set, and970

suppose that J is a function that is constant on Ω and that satisfies (KL) at each point in971

Ω. Then there exist ε > 0, η > 0 and ϕ ∈ C1((0, η)) that satisfy the same conditions as in972

Definition A.11, such that for all u ∈ Ω and all u in973

{u ∈ Rn | dist(u,Ω) < ε} ∩ {u ∈ Rn | J(u) < J(u) < J(u) + η}(A.5)974975

condition (KL) is satisfied.976
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