31,434 research outputs found

    The Power of LOCCq State Transformations

    Get PDF
    Reversible state transformations under entanglement non-increasing operations give rise to entanglement measures. It is well known that asymptotic local operations and classical communication (LOCC) are required to get a simple operational measure of bipartite pure state entanglement. For bipartite mixed states and multipartite pure states it is likely that a more powerful class of operations will be needed. To this end \cite{BPRST01} have defined more powerful versions of state transformations (or reducibilities), namely LOCCq (asymptotic LOCC with a sublinear amount of quantum communication) and CLOCC (asymptotic LOCC with catalysis). In this paper we show that {\em LOCCq state transformations are only as powerful as asymptotic LOCC state transformations} for multipartite pure states. We first generalize the concept of entanglement gambling from two parties to multiple parties: any pure multipartite entangled state can be transformed to an EPR pair shared by some pair of parties and that any irreducible mm (m≥2)(m\ge 2) party pure state can be used to create any other state (pure or mixed), using only local operations and classical communication (LOCC). We then use this tool to prove the result. We mention some applications of multipartite entanglement gambling to multipartite distillability and to characterizations of multipartite minimal entanglement generating sets. Finally we discuss generalizations of this result to mixed states by defining the class of {\em cat distillable states}

    Compression and R-wave detection of ECG/VCG data

    Get PDF
    Application of information theory to eliminate redundant part of electrocardiogram or vectorcardiogram is described. Operation of medical equipment to obtain three dimensional study of patient is discussed. Use of fast Fourier transform to accomplish data compression is explained

    Entanglement molecules

    Get PDF
    We investigate the entanglement properties of multiparticle systems, concentrating on the case where the entanglement is robust against disposal of particles. Two qubits -belonging to a multipartite system- are entangled in this sense iff their reduced density matrix is entangled. We introduce a family of multiqubit states, for which one can choose for any pair of qubits independently whether they should be entangled or not as well as the relative strength of the entanglement, thus providing the possibility to construct all kinds of ''Entanglement molecules''. For some particular configurations, we also give the maximal amount of entanglement achievable.Comment: 4 pages, 1 figur

    Activating bound entanglement in multi-particle systems

    Get PDF
    We analyze the existence of activable bound entangled states in multi-particle systems. We first give a series of examples which illustrate some different ways in which bound entangled states can be activated by letting some of the parties to share maximally entangled states. Then, we derive necessary conditions for a state to be distillable as well as to be activable. These conditions turn out to be also sufficient for a certain family of multi-qubit states. We use these results to explicitely to construct states displaying novel properties related to bound entanglement and its activation.Comment: 8 pages, 3 figure

    A BIO-ECONOMIC MODEL OF WETLAND PROTECTION ON PRIVATE LANDS

    Get PDF
    Wetland ecosystems on privately owned farms such as those on the Murrumbidgee River Floodplain in the state of New South Wales, Australia provide a mix of potentially valuable outputs to their owners and the wider community. The mix of values generated is dependent on the biophysical status of the wetlands, which in-turn, is dependent on the land management in and around these multiple-output ecosystems. Despite the range of private and public values generated, management decisions are based primarily on the private values that landowners receive. These private land management decisions also affect social values. Hence, there is potentially a demand for public policy to influence decisions based on the social values wetlands generate. This paper is predicated on the principle that good policy is reliant on information about wetland values. We present an integrated bio-economic model of wetland management that incorporates the biological and economic impacts at a landscape scale. The model reflects the multiple private and social values generated by wetlands and the dynamic nature of the trade-offs between these values. A number of broad policy conclusions for wetland management in Australia are generated from the outputs of the bio-economic model.Land Economics/Use,

    Application of a transonic potential flow code to the static aeroelastic analysis of three-dimensional wings

    Get PDF
    Since the aerodynamic theory is nonlinear, the method requires the coupling of two iterative processes - an aerodynamic analysis and a structural analysis. A full potential analysis code, FLO22, is combined with a linear structural analysis to yield aerodynamic load distributions on and deflections of elastic wings. This method was used to analyze an aeroelastically-scaled wind tunnel model of a proposed executive-jet transport wing and an aeroelastic research wing. The results are compared with the corresponding rigid-wing analyses, and some effects of elasticity on the aerodynamic loading are noted

    When only two thirds of the entanglement can be distilled

    Get PDF
    We provide an example of distillable bipartite mixed state such that, even in the asymptotic limit, more pure-state entanglement is required to create it than can be distilled from it. Thus, we show that the irreversibility in the processes of formation and distillation of bipartite states, recently proved in [G. Vidal, J.I. Cirac, Phys. Rev. Lett. 86, (2001) 5803-5806], is not limited to bound-entangled states.Comment: 4 pages, revtex, 1 figur

    Irreversibility in asymptotic manipulations of entanglement

    Get PDF
    We show that the process of entanglement distillation is irreversible by showing that the entanglement cost of a bound entangled state is finite. Such irreversibility remains even if extra pure entanglement is loaned to assist the distillation process.Comment: RevTex, 3 pages, no figures Result on indistillability of PPT states under pure entanglement catalytic LOCC adde

    Half-Heusler semiconductors as piezoelectrics

    Full text link
    One of the central challenges in materials science is the design of functional and multifunctional materials, in which large responses are produced by applied fields and stresses. A rapidly developing paradigm for the rational design of such materials is based on the first-principles study of a large materials family, the perovskite oxides being the prototypical case. Specifically, first-principles calculations of structure and properties are used to explore the microscopic origins of the functional properties of interest and to search a large space of equilibrium and metastable phases to identify promising candidate systems. In this paper, we use a first-principles rational-design approach to demonstrate semiconducting half-Heusler compounds as a previously-unrecognized class of piezoelectric materials, and to provide guidance for the experimental realization and further investigation of high-performance materials suitable for practical applications.Comment: 5 pages, 3 figues, 3 table

    New classes of n-copy undistillable quantum states with negative partial transposition

    Get PDF
    The discovery of entangled quantum states from which one cannot distill pure entanglement constitutes a fundamental recent advance in the field of quantum information. Such bipartite bound-entangled (BE) quantum states \emph{could} fall into two distinct categories: (1) Inseparable states with positive partial transposition (PPT), and (2) States with negative partial transposition (NPT). While the existence of PPT BE states has been confirmed, \emph{only one} class of \emph{conjectured} NPT BE states has been discovered so far. We provide explicit constructions of a variety of multi-copy undistillable NPT states, and conjecture that they constitute families of NPT BE states. For example, we show that for every pure state of Schmidt rank greater than or equal to three, one can construct n-copy undistillable NPT states, for any n≥1n\geq1. The abundance of such conjectured NPT BE states, we believe, considerably strengthens the notion that being NPT is only a necessary condition for a state to be distillable.Comment: Latex, 10 page
    • …
    corecore