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Irreversibility in asymptotic manipulations of a distillable entangled state
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We provide an example of a distillable bipartite mixed state such that, even in the asymptotic limit, more
pure-state entanglement is required to create it than can be distilled from it. Thus, we show that the irrevers-
ibility in the processes of formation and distillation of bipartite states, recently proved in@G. Vidal and J. I.
Cirac, Phys. Rev. Lett.86, 5803~2001!#, is not limited to bound-entangled states.
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Distillation is one of the basic concepts in entanglem
theory. As shown in the pioneering works on entanglem
transformations@1,2#, it is possible to use local operation
and classical communication~LOCC! to convert, in the
asymptotic limit (N→`), N copies of some bipartite mixe
stater into M of copies of some reference pure state,
maximally entangled state

uF&[
1

A2
~ u00&1u11&) ~1!

of a two-qubit system, which is said to contain one ebit~en-
tangled bit!. Moreover, the distillable entanglementED(r),
defined as the maximal achievable yieldM /N, was shown to
be often finite. This is a remarkable result with importa
implications in quantum information theory. It says, for i
stance, that a noisy channel can be used to establish pe
quantum communication between two distant parties, if th
are allowed to perform LOCC. Indeed, the imperfect chan
can be used to create many copies of some mixed entan
stater, which can then be purified into fewer copies ofuF&
and subsequently used to achieve perfect quantum com
nication through teleportation@3#.

A notion dual to distillation is that of preparation ofr
using pure-state entanglement and LOCC@2#. Now M copies
of uF& are transformed intoN copies ofr. The entanglemen
cost EC(r) @4# ~asymptotic version of the entanglement
formationEF(r) @2,5#! is defined as the minimal ratioM /N
asymptotically achievable by LOCC.EC(r) quantifies the
amount of pure-state entanglement required to create a
of r, in the above asymptotic sense.

Notice that the processes of formation and distillation c
be concatenated into a cycle. Starting fromNEC(r) copies
of uF&, two distant parties can use LOCC to prepareN cop-
ies of r; and theN copies ofr can be subsequently distille
back intoNED(r) copies ofuF&,

uF& ^ NEC(r)⇒r ^ N⇒uF& ^ NED(r). ~2!

Already in the early contributions it was suggested t
maybe sometimes this cycle cannot be closed completel
that perhaps not all the initial pure-state entanglement u
in the preparation process can be recovered through dis
tion. That is, maybe an irreversible loss of quantum corre
tions takes place during the mixing of pure-state entan
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ment intor ^ N and, accordingly, the distillable entangleme
ED(r) is smaller than the entanglement costEC(r).

Very recently this phenomenon has been proved to ind
occur @6#. In particular, it has been shown that some und
tillable bipartite staterb—i.e., with ED(rb)50 ebits—has
nonvanishing entanglement cost. Notably, the irreversibi
observed in the asymptotic preparation and distillation ofrb

remains even when LOCC are supplemented with loa
pure-state entanglement, to be returned after the manip
tion, in the so-called catalytic LOCC setting@7#.

The results in Ref.@6# still leave, however, an importan
question open. One could associate the irreversibility de
onstrated there to the fact that the staterb is bound en-
tangled, that is, to the remarkable property that no pure-s
entanglement at all can be distilled from it@8#. It could well
be the case that the gap observed betweenEC andED is just
a characteristic feature of some bound entangled sta
whereasEC5ED always holds for distillable states. After al
this is the case for bipartite pure states@9# and some simple
cases of mixed state@10#, which exhaust all the cases whe
EC andED have been computed.

In this paper we will present an example of a bipart
mixed states that can be distilled, that is,ED(s).0, and
such thatEC(s).ED(s). We extend, thereby, the irrevers
ibility result of Ref. @6# to the case of distillable states. I
particular, the extension also holds for catalytic LOCC tra
formations@7#.

A widely recognized, major problem concerning the stu
of mixed-state entanglement is that it is very difficult to com
pute the asymptotic measuresEC and ED . Here, however,
we are not interested in the actual values ofEC(s) and
ED(s). For the present purposes it is sufficient to show t
s can be distilled, and to boundED(s) and EC(s) tight
enough from above and from below, respectively, so that
bounds already imply a gap between the two quantities.
start by collecting an amalgam of useful facts.

~i! A sufficient condition for a mixed stater to be distill-
able is that a projectorP into a C 2

^ C 2 subspace~that is, a
subspace, which is the tensor product of two-dimensio
subspaces for each of the two separated parts of the com
ite system! exists such that the projectionPrP† is still en-
tangled @8#, that is, such that the partial transposition
PrP† has a negative eigenvalue.

~ii ! The logarithmic negativityEN(r)[ log2@112N(r)#
@11#, whereN(r) is the absolute value of the sum of neg
©2001 The American Physical Society23-1
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tive eigenvalues of partial transposition ofr, is an upper
bound to the distillable entanglement,

ED~r!<EN~r!. ~3!

In addition,EN is an additive function,

EN~r1^ r2!5EN~r1!1EN~r2!, ~4!

which only vanishes for states with positive partial transp
sition ~PPT! states,

EN~rPPT!50. ~5!

Finally, and very important to us,EN(r) is a continuous
function of r.

~iii ! The entanglement of formationEF @2# of r is
bounded below by@6#

EF~r!>2 log2 a, ~6!

wherea is the maximal overlap of a product stateuab& with
the projectorP onto the support ofr,

a[max
uab&

^abuPuab&. ~7!

Accordingly, the entanglement costEC(r) is bounded below
by @6#

EC~r!>2 log2 b, ~8!

if for all N the maximal overlap of a normalized produ
vectoruaNbN& with theN-fold tensor product ofP is at most
bN,

max
uaNbN&

^aNbNuP ^ NuaNbN&<bN. ~9!

~iv! The four-dimensional subspaceV,C 3
^ C 3 orthogo-

nal to the five product vectors

u0& ^ ~ u0&1u1&),

~ u0&1u1&) ^ u2&,

u2& ^ ~ u1&1u2&),

~ u1&1u2&) ^ u0&,

~ u0&2u1&1u2&) ^ ~ u0&2u1&1u2&) ~10!

does not contain product vectors@12#. The projectorPb onto
V satisfies the following:~a! it has a PPT@12#; and ~b! it
fulfills Eq. ~9! with b,0.99 @6#.

We introduce now a one-parameter family of states

s~p![~12p!rb1puc&^cu, ~11!

whererb[Pb/4 is the PPT bound entangled state introduc
in Ref. @12# in the context of the so-called nonextendib
product basis, and used in Ref.@6# to prove irreversibility of
asymptotic manipulations, and
01232
-

d

uc&[
1

A6
~ u00&2u01&22u11&) ~12!

is an entangled pure state that is orthogonal to all prod
states of Eq.~10!, that is,uc&PV. For p50, we recoverrb ,
for which we know thatEC(rb).2 log2 0.99.D(rb)50. In
what follows we will use facts~i!–~iv! and perturbation
theory to show that forp.0 we encounter statess(p) that
can be distilled, and withEC(sp).ED(sp).

The family of statess(p) in Eq. ~11! has been carefully
chosen to fulfill two important properties. First,s(p) is sup-
ported onV, sinceV is the support ofrb and alsouc& is
supported inV. Using ~iii ! and~iv b! this means that for any
pP@0,1# we have a constant lower bound forEC .

Property 1. The entanglement cost ofs(p), pP@0,1#, is
bounded below by

EC@s~p!#.2 log2 0.9950.015 ebits. ~13!

Let rb
TA denote the partial transposition ofrb , andP the rank

four, product projector (u0&^0u1u1&^1u) ^ (u0&^0u1u1&^1u).
Notice that, by construction,rb

TA5rb>0, (PrbP†)TA

5PrbP†, and Puc&5uc&. The second important feature o
s(p) is that, for anyp.0 the partial transposition of the
projectionPs(p)P†,

@Ps~p!P†#TA5~12p!PrbP†1puc&^cuTA, ~14!

has a negative eigenvaluen. Therefore, because of fact~i!,
the corresponding states(p) can be distilled.

Property 2. For pP(0,1#, the states(r) can be distilled,
that is,

ED@s~p!#.0 ebits. ~15!

For instance, forp50.015,unu52.731024 ~see also Fig. 1!.
Property 2 has been achieved by selecting a projectoP

such that (PrbP†)TA has only rank three, and thus one va
ishing eigenvalue, whereasuc&PV has been chosen so th
(Puc&^cuP†)TA5uc&^cuTA, that is, so that the negative e
genvalue ofuc&^cuTA entirely contributes to Eq.~14!. We can
use perturbation theory to check what the effect of su
choices is.

Let M and N be finite-dimensional Hermitian operator
( i 50

l mi umi&^mi u the spectral decomposition ofM, with mi its
increasingly ordered eigenvalues andm0Þm1, and lete be a
small parameter. Then the lowest eigenvalue ofM1eN is, as
given by perturbation theory@13#,

m01e^m0uNum0&1e2(
i 51

l
^m0uM umi&u2

m02mi
1O~e3!. ~16!

Making the proper identifications, we realize that the ne
tive eigenvaluen(p) of the operator in Eq.~14! is

n52ukup21O~p3!, ~17!
3-2
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whereuku.0 is of the order of 1 and the zero- and first-ord
contributions vanish due, respectively, to the fact that
smallest eigenvalue of Eq.~14! vanishes forp50, and to the
fact that the corresponding eigenvector,ut&[u0& ^ (u0&
1u1&)/A2, fulfills

^tu~ uc&^cuTA!ut&5^tuc&^cut&50. ~18!

Finally, for p<1 such that contributionsO(p3) may become
important, numerical calculations show thatunu grows mono-
tonically with p @see Fig.~1!#.

Summarizing, so far we have learned thats(p) can be
distilled for any p.0, while the entanglement cost
bounded below by Eq.~13!. In order to complete the resu
we need to prove that the distillable entanglement ofs(p) is,
in some regime ofpP(0,1#, smaller than the lower boun
~13!. This would already follow from the above ifED@s(p)#
were a continuous function ofp. For p50 we have the
bound entangled staterb , that is, ED@s(0)#50 ebits,
whereas at the other extreme,p51, we have the pure
entangled stateuc&, whose distillable entanglementED ~and
entanglement costEC) can be easily computed and rea
ED@s(1)#50.55 ebits. But, unfortunately, we cannot ba
our argument in the continuity ofED@s(p)# as a function of
p, to conclude that an intermediatep must exist such that the
distillable entanglement is nonzero and still below the bou
~13!. Whereas it may well be thatED(r) is a continuous
function of r, this has not been proved. Notice that a pla
sible objection to continuity relies on the fact thatED(r) is
actually a function ofr ^ N in the largeN limit. Therefore, a

FIG. 1. Finite gap between entanglement costEC and distillable
entanglementED for distillable states. We obtain, as a function ofp,
an upper boundEN@s(p)# ~diagonal, dashed line! for ED@s(p)#,
which in some regime is smaller than the lower bound~horizontal
line! for the entanglement costEC@s(p)#. Both bounds are ex-
pressed in ebits. The lower, dotted curve corresponds to 20unu,
whereunu is the modulus of the negative eigenvalue of the opera
@Ps(p)P†#TA, and indicates that the distillable entangleme
ED@s(p)# is finite.
01232
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small perturbation ofr, which produces a large deviation i
r ^ N, may imply a discontinuous change inED(r).

Nevertheless, following fact~ii !, the logarithmic negativ-
ity EN@s(p)# is a continuous upper bound forED@s(p)#
@see Fig. ~1!#. A direct calculation ofEN@s(p)# finally
proves the irreversibility of the preparation-distillation cyc
for distillable bipartite states. In particular, forp50.0015 we
have

ED@s~0.0015!#,EN@s~0.0015!#50.012 ebits. ~19!

Thus, s(0.0015) is an example of distillable state with
finite gapEC2ED.0.003 ebits.

We can now further use the properties of the logarithm
negativity EN to show that such a gap remains even wh
pure-state entanglement is loaned@7# to assist in the trans
formations, as it was done withrb in Ref. @6#. This is
achieved by considering a distillation process starting fromN
copies ofs(p) together withL copies ofuF&,

s ^ N
^ uF&^Fu ^ L⇒uF& ^ L1NED

c (s), ~20!

whereED
c (s) denotes the distillable entanglement ofs in the

catalytic setting. For anyN andL, we have

EN~s ^ N
^ uF&^Fu ^ L!5EN~s ^ N!1EN~F ^ L! ~21!

5NEN~s!1L, ~22!

where we have used additivity ofEN and the fact that
EN(F)51. This means that even in the largeN limit, and
once theL loaned statesuF& have been discounted from th
distillation outcome, at mostNEN(s) ebits of entanglemen
has been distilled, so that even in the catalytic scenario
bound ED

c (s),EN(s) holds. Therefore, the irreversibility
result of the paper also applies to this case.

We have shown that the irreversibility in the asympto
manipulation of bipartite mixed states is not a phenome
restricted to bound entangled states, by providing a spe
example of distillable state with a finite gap between its e
tanglement costEC and its distillable entanglementED . No-
tice that these results legitimize the use of different measu
of entanglement, such asEC and ED , to quantify, in the
asymptotic limit, the resources of entangled mixed sta
The search for an intrinsic irreversibility in the asympto
manipulation of bipartite systems has motivated, throu
several contributions—see, for instance,@6,11,14–17#, the
development of many techniques for the study of entang
ment and has certainly implied an important gain in insig
Paradoxically, a remaining open question is now whethe
nontrivial example@18# of a bipartite mixed state exists fo
which the processes of preparation and distillation can
performed in a fully reversible fashion.
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