1,608 research outputs found

    Design criteria for public emergency warning systems

    Get PDF
    This paper describes the development of a public emergency messaging system in Western Australia. A set of design criteria were identified by a review of relevant published literature, a survey of current practice in Australia, and consultation with local stakeholders. The system should support: Multiple Recipients, Multiple Channels, Multiple Hazards, Multiple Stakeholders, Multiple Senders, Multiple Platforms, and Write Once Message Composition. A prototype system was built according to these design criteria, based on the Common Alerting Protocol version 1.0. The design was validated in trials simulating messages sent during a tropical cyclone and a bushfire. A total of 56 trial participants from identified stakeholder groups were surveyed with regard to their experience of the prototype system. Overall, the prototype system functioned successfully and participants reported high levels of satisfaction. The paper describes this research project and the initial stages of the subsequent development of a production system, called APECS

    Supersymmetric Effects in Parity-Violating Deep Inelastic Electron-Nucleus Scattering

    Full text link
    We compute the supersymmetric (SUSY) corrections to the parity-violating, deep inelastic electron-deuteron asymmetry. Working with the Minimal Supersymmetric Standard Model (MSSM) we consider two cases: R parity conserving and R parity-violating. Under these scenarios, we compare the SUSY effects with those entering other parity-violating observables. For both cases of the MSSM, we find that the magnitude of the SUSY corrections can be as large as about 1% and that they are strongly correlated with the effects on other parity-violating observables. A comparison of various low-energy parity-violating observables thus provides a potentially interesting probe of SUSY.Comment: 12 pages, 5 figure

    A discrete time relativistic Toda lattice

    Get PDF
    Four integrable symplectic maps approximating two Hamiltonian flows from the relativistic Toda hierarchy are introduced. They are demostrated to belong to the same hierarchy and to examplify the general scheme for symplectic maps on groups equiped with quadratic Poisson brackets. The initial value problem for the difference equations is solved in terms of a factorization problem in a group. Interpolating Hamiltonian flows are found for all the maps.Comment: 32 pages, LaTe

    Invalid party wall awards and how to avoid them

    Get PDF
    Considers the reasons for the invalidity of party wall awards. Examines decided cases under earlier party wall legislation in the context of the Party Wall etc. Act 1996. Explains invalidity on the basis of an excess of the surveyors’ statutory authority. Defines this authority in terms of jurisdiction and power. Demonstrates the limits of the surveyors’ authority and emphasises the importance of strict compliance with statutory procedures. Concludes that surveyors should adopt an inquisitive and analytical approach to the scope of their authority to avoid the possibility of invalid awards. Echoes John Anstey’s earlier warning that surveyors should avoid a broad-brush approach to their duties which will only leave them “covered in soot”

    Applying spatial reasoning to topographical data with a grounded geographical ontology

    Get PDF
    Grounding an ontology upon geographical data has been pro- posed as a method of handling the vagueness in the domain more effectively. In order to do this, we require methods of reasoning about the spatial relations between the regions within the data. This stage can be computationally expensive, as we require information on the location of points in relation to each other. This paper illustrates how using knowledge about regions allows us to reduce the computation required in an efficient and easy to understand manner. Further, we show how this system can be implemented in co-ordination with segmented data to reason abou

    An Arbitrary Two-qubit Computation In 23 Elementary Gates

    Get PDF
    Quantum circuits currently constitute a dominant model for quantum computation. Our work addresses the problem of constructing quantum circuits to implement an arbitrary given quantum computation, in the special case of two qubits. We pursue circuits without ancilla qubits and as small a number of elementary quantum gates as possible. Our lower bound for worst-case optimal two-qubit circuits calls for at least 17 gates: 15 one-qubit rotations and 2 CNOTs. To this end, we constructively prove a worst-case upper bound of 23 elementary gates, of which at most 4 (CNOT) entail multi-qubit interactions. Our analysis shows that synthesis algorithms suggested in previous work, although more general, entail much larger quantum circuits than ours in the special case of two qubits. One such algorithm has a worst case of 61 gates of which 18 may be CNOTs. Our techniques rely on the KAK decomposition from Lie theory as well as the polar and spectral (symmetric Shur) matrix decompositions from numerical analysis and operator theory. They are related to the canonical decomposition of a two-qubit gate with respect to the ``magic basis'' of phase-shifted Bell states, published previously. We further extend this decomposition in terms of elementary gates for quantum computation.Comment: 18 pages, 7 figures. Version 2 gives correct credits for the GQC "quantum compiler". Version 3 adds justification for our choice of elementary gates and adds a comparison with classical library-less logic synthesis. It adds acknowledgements and a new reference, adds full details about the 8-gate decomposition of topC-V and stealthily fixes several minor inaccuracies. NOTE: Using a new technique, we recently improved the lower bound to 18 gates and (tada!) found a circuit decomposition that requires 18 gates or less. This work will appear as a separate manuscrip

    Local channels preserving maximal entanglement or Schmidt number

    Full text link
    Maximal entanglement and Schmidt number play an important role in various quantum information tasks. In this paper, it is shown that a local channel preserves maximal entanglement state(MES) or preserves pure states with Schmidt number rr(rr is a fixed integer) if and only if it is a local unitary operation.Comment: 10 page

    Initial in vitro evaluations of antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria

    Get PDF
    Aims: The aim of the study was to evaluate the in vitro antibacterial effects of glucosinolate hydrolysis products (GHP) against plant pathogenic micro-organisms namely Agrobacterium tumefaciens, Erwinia chrysanthemi, Pseudomonas cichorii, Pseudomonas tomato, Xanthomonas campestris and Xanthomonas juglandis. Methods and Results: Using a disc diffusion assay, seven different doses of 10 GHP were tested against each bacteria. The results showed that the isothiocyanates were potent antibacterials, whilst the other GHP were much less efficient. Moreover, the antibacterial effects were dose-dependent, increasing with the dose applied; 2-phenylethylisothiocyanate and sulforaphane showed the strongest inhibitory effects. The overall results show a great potential for using the isothiocyanates as an alternative tool to control undesired bacterial growth in plants. Conclusions: Glucosinolate hydrolysis products and more specifically the isothiocyanates: benzylisothiocyanate, 2-phenylethylisothiocyanate, the isothiocyanate Mix and sulforaphane, were effective phytochemicals against the in vitro growth of the phytopathogenic bacteria. The antibacterial activity exhibited by these phytochemicals reinforces their potential as alternatives to the traditional chemical control of phytopathogenic bacteria. Significance and Impact of the Study: This current in vitro study is the first providing comparative data on GHP as potential control agents for plant pathogenic bacteria. However, more studies are needed to determine their possible allelopathic impacts e.g. inhibition of plant growth and negative effects on beneficial soil bacteria and fungi (mycorrhizae

    Supersymmetric Effects in Deep Inelastic Neutrino-Nucleus Scattering

    Get PDF
    We compute the supersymmetric (SUSY) contributions to neutrino (antineutrino)-nucleus deep inelastic scattering in the Minimal Supersymmetric Standard Model (MSSM). We consider the ratio of neutral current to charged current cross sections, RνR_{\nu} and RνˉR_{\bar \nu}, and compare with the deviations of these quantities from the Standard Model predictions implied by the recent NuTeV measurement. After performing a model-independent analysis, we find that SUSY loop corrections generally have the opposite sign from the NuTeV anomaly. We discuss one scenario in which a right-sign effect arises, and show that it is ruled out by other precision data. We also study for R parity-violating (RPV) contributions. Although RPV effects could, in principle, reproduce the NuTeV anomaly, such a possibility is also ruled out by other precision electroweak measurements.Comment: 30 pages, 13 figure

    A reversible theory of entanglement and its relation to the second law

    Get PDF
    We consider the manipulation of multipartite entangled states in the limit of many copies under quantum operations that asymptotically cannot generate entanglement. As announced in [Brandao and Plenio, Nature Physics 4, 8 (2008)], and in stark contrast to the manipulation of entanglement under local operations and classical communication, the entanglement shared by two or more parties can be reversibly interconverted in this setting. The unique entanglement measure is identified as the regularized relative entropy of entanglement, which is shown to be equal to a regularized and smoothed version of the logarithmic robustness of entanglement. Here we give a rigorous proof of this result, which is fundamentally based on a certain recent extension of quantum Stein's Lemma proved in [Brandao and Plenio, Commun. Math. 295, 791 (2010)], giving the best measurement strategy for discriminating several copies of an entangled state from an arbitrary sequence of non-entangled states, with an optimal distinguishability rate equal to the regularized relative entropy of entanglement. We moreover analyse the connection of our approach to axiomatic formulations of the second law of thermodynamics.Comment: 21 pages. revised versio
    • …
    corecore