1,295 research outputs found

    Time course and robustness of ERP object and face differences

    Get PDF
    Conflicting results have been reported about the earliest “true” ERP differences related to face processing, with the bulk of the literature focusing on the signal in the first 200 ms after stimulus onset. Part of the discrepancy might be explained by uncontrolled low-level differences between images used to assess the timing of face processing. In the present experiment, we used a set of faces, houses, and noise textures with identical amplitude spectra to equate energy in each spatial frequency band. The timing of face processing was evaluated using face–house and face–noise contrasts, as well as upright-inverted stimulus contrasts. ERP differences were evaluated systematically at all electrodes, across subjects, and in each subject individually, using trimmed means and bootstrap tests. Different strategies were employed to assess the robustness of ERP differential activities in individual subjects and group comparisons. We report results showing that the most conspicuous and reliable effects were systematically observed in the N170 latency range, starting at about 130–150 ms after stimulus onset

    A Measure of Stregth of an Unextendible Product Basis

    Get PDF
    A notion of strength of an unextendible product basis is introduced and a quantitative measure for it is suggested with a view to providing an indirect measure for the bound entanglement of formation of the bound entangled mixed state associated with an unextendible product basis.Comment: 4 pages, Latex, 1 figure, remarks, criticisms welcom

    Modal quantum theory

    Full text link
    We present a discrete model theory similar in structure to ordinary quantum mechanics, but based on a finite field instead of complex amplitudes. The interpretation of this theory involves only the "modal" concepts of possibility and necessity rather than quantitative probability measures. Despite its simplicity, our model theory includes entangled states and has versions of both Bell's theorem and the no cloning theorem.Comment: Presented at the 7th Workshop on Quantum Physics and Logic, Oxford University (29-30 May 2010). Revised 1 Aug 2011 in response to referee comment

    Efficient quantum key distribution scheme with nonmaximally entangled states

    Get PDF
    We propose an efficient quantum key distribution scheme based on entanglement. The sender chooses pairs of photons in one of the two equivalent nonmaximally entangled states randomly, and sends a sequence of photons from each pair to the receiver. They choose from the various bases independently but with substantially different probabilities, thus reducing the fraction of discarded data, and a significant gain in efficiency is achieved. We then show that such a refined data analysis guarantees the security of our scheme against a biased eavesdropping strategy.Comment: 5 Pages, No Figur

    Purification and correlated measurements of bipartite mixed states

    Full text link
    We prove that all purifications of a non-factorable state (i.e., the state which cannot be expressed in a form ρAB=ρAρB\rho_{AB}=\rho_A\otimes\rho_B) are entangled. We also show that for any bipartite state there exists a pair of measurements which are correlated on this state if and only if the state is non-factorable.Comment: 4 revtex pages, to appear in Phys. Rev.

    On the geometric distance between quantum states with positive partial transposition and private states

    Full text link
    We prove an analytic positive lower bound for the geometric distance between entangled positive partial transpose (PPT) states of a broad class and any private state that delivers one secure key bit. Our proof holds for any Hilbert space of finite dimension. Although our result is proven for a specific class of PPT states, we show that our bound nonetheless holds for all known entangled PPT states with non-zero distillable key rates whether or not they are in our special class.Comment: 16 page

    Constraint on teleportation over multipartite pure states

    Full text link
    We first define a quantity exhibiting the usefulness of bipartite quantum states for teleportation, called the quantum teleportation capability, and then investigate its restricted shareability in multi-party quantum systems. In this work, we verify that the quantum teleportation capability has a monogamous property in its shareability for arbitrary three-qutrit pure states by employing the monogamy inequality in terms of the negativity.Comment: 4 pages, 1 figur

    Robust long-distance entanglement and a loophole-free Bell test with ions and photons

    Get PDF
    Two trapped ions that are kilometers apart can be entangled by the joint detection of two photons, each coming from one of the ions, in a basis of entangled states. Such a detection is possible with linear optical elements. The use of two-photon interference allows entanglement distribution without interferometric sensitivity to the path length of the photons. The present method of creating entangled ions also opens up the possibility of a loophole-free test of Bell's inequalities.Comment: published versio

    Decoy States and Two Way Quantum Key Distribution Schemes

    Full text link
    We study the possible application of the decoy state method on a basic two way quantum key distribution (QKD) scheme to extend its distance. Noting the obvious advantage of such a QKD scheme in allowing for single as well as double photon contributions, we derive relevant lower-bounds on the corresponding gains in a practical decoy state implementation using two intensities for decoy states. We work with two different approaches in this vein and compare these with an ideal infinite decoy state case as well as the simulation of the original.Comment: Much revised from original manuscript. Accepted for publication in Optics Communications (some variations may exist in some wordings in the text
    corecore