22,167 research outputs found

    Laser-like Instabilities in Quantum Nano-electromechanical Systems

    Full text link
    We discuss negative damping regimes in quantum nano-electromechanical systems formed by coupling a mechanical oscillator to a single-electron transistor (normal or superconducting). Using an analogy to a laser with a tunable atom-field coupling, we demonstrate how these effects scale with system parameters. We also discuss the fluctuation physics of both the oscillator and the single-electron transistor in this regime, and the degree to which the oscillator motion is coherent.Comment: 4+ pages, 1 figure; reference to the work of Dykman and Krivoglaz adde

    Computer program offers new method for constructing periodic orbits in nonlinear dynamical systems

    Get PDF
    Computer program uses an iterative method to construct precisely periodic orbits which dynamically approximate solutions that converge to precise dynamical solutions in the limit of the sequence. The method used is a modification of the generalized Newton-Raphson algorithm used in analyzing two point boundary problems

    Method for constructing periodic orbits in nonlinear dynamic systems

    Get PDF
    Method is modification of generalized Newton-Ralphson algorithm for analyzing two-point boundary problems. It constructs sequence of solutions that converge to precise dynamic solution in the sequence limit. Program calculates periodic orbits in either circular or elliptical restricted three-body problems

    Activating bound entanglement in multi-particle systems

    Get PDF
    We analyze the existence of activable bound entangled states in multi-particle systems. We first give a series of examples which illustrate some different ways in which bound entangled states can be activated by letting some of the parties to share maximally entangled states. Then, we derive necessary conditions for a state to be distillable as well as to be activable. These conditions turn out to be also sufficient for a certain family of multi-qubit states. We use these results to explicitely to construct states displaying novel properties related to bound entanglement and its activation.Comment: 8 pages, 3 figure

    Irreversibility in asymptotic manipulations of entanglement

    Get PDF
    We show that the process of entanglement distillation is irreversible by showing that the entanglement cost of a bound entangled state is finite. Such irreversibility remains even if extra pure entanglement is loaned to assist the distillation process.Comment: RevTex, 3 pages, no figures Result on indistillability of PPT states under pure entanglement catalytic LOCC adde

    On the necessity of complexity

    Full text link
    Wolfram's Principle of Computational Equivalence (PCE) implies that universal complexity abounds in nature. This paper comprises three sections. In the first section we consider the question why there are so many universal phenomena around. So, in a sense, we week a driving force behind the PCE if any. We postulate a principle GNS that we call the Generalized Natural Selection Principle that together with the Church-Turing Thesis is seen to be equivalent to a weak version of PCE. In the second section we ask the question why we do not observe any phenomena that are complex but not-universal. We choose a cognitive setting to embark on this question and make some analogies with formal logic. In the third and final section we report on a case study where we see rich structures arise everywhere.Comment: 17 pages, 3 figure

    Quantum Correlation Bounds for Quantum Information Experiments Optimization: the Wigner Inequality Case

    Full text link
    Violation of modified Wigner inequality by means binary bipartite quantum system allows the discrimination between the quantum world and the classical local-realistic one, and also ensures the security of Ekert-like quantum key distribution protocol. In this paper we study both theoretically and experimentally the bounds of quantum correlation associated to the modified Wigner's inequality finding the optimal experimental configuration for its maximal violation. We also extend this analysis to the implementation of Ekert's protocol

    Inviscid Modelling of Unsteady Flow Through Centrifugal Fans: Single Blade Passage Models. G.U. Aero Report 9309

    Get PDF
    The internal flows within two centrifugal blowers are examined using an inviscid formulation of the fluid equations of motion. The aim of the work was to predict the impeller unsteady stalled flow patterns whilst restricting the analysis to a single blade computational domain. Large stalled zones are predicted at flow rates corresponding to experiment. Some solver instabilities are reported for the most contorted computational meshes

    The quantum dynamic capacity formula of a quantum channel

    Get PDF
    The dynamic capacity theorem characterizes the reliable communication rates of a quantum channel when combined with the noiseless resources of classical communication, quantum communication, and entanglement. In prior work, we proved the converse part of this theorem by making contact with many previous results in the quantum Shannon theory literature. In this work, we prove the theorem with an "ab initio" approach, using only the most basic tools in the quantum information theorist's toolkit: the Alicki-Fannes' inequality, the chain rule for quantum mutual information, elementary properties of quantum entropy, and the quantum data processing inequality. The result is a simplified proof of the theorem that should be more accessible to those unfamiliar with the quantum Shannon theory literature. We also demonstrate that the "quantum dynamic capacity formula" characterizes the Pareto optimal trade-off surface for the full dynamic capacity region. Additivity of this formula simplifies the computation of the trade-off surface, and we prove that its additivity holds for the quantum Hadamard channels and the quantum erasure channel. We then determine exact expressions for and plot the dynamic capacity region of the quantum dephasing channel, an example from the Hadamard class, and the quantum erasure channel.Comment: 24 pages, 3 figures; v2 has improved structure and minor corrections; v3 has correction regarding the optimizatio
    • …
    corecore