36,815 research outputs found
Mixedness and teleportation
We show that on exceeding a certain degree of mixedness (as quantified by the
von Neumann entropy), entangled states become useless for teleporatation. By
increasing the dimension of the entangled systems, this entropy threshold can
be made arbitrarily close to maximal. This entropy is found to exceed the
entropy threshold sufficient to ensure the failure of dense coding.Comment: 6 pages, no figure
On the origin of noisy states whose teleportation fidelity can be enhanced through dissipation
Recently Badziag \emph{et al.} \cite{badziag} obtained a class of noisy
states whose teleportation fidelity can be enhanced by subjecting one of the
qubits to dissipative interaction with the environment via amplitude damping
channel (ADC). We show that such noisy states result while sharing the states
(| \Phi ^{\pm}> =\frac{1}{\sqrt{2}}(| 00> \pm | 11>)) across ADC. We also show
that under similar dissipative interactions different Bell states give rise to
noisy entangled states that are qualitatively very different from each other in
the sense, only the noisy entangled states constructed from the Bell states (|
\Phi ^{\pm}>) can \emph{}be made better sometimes by subjecting the unaffected
qubit to a dissipative interaction with the environment. Importantly if the
noisy state is non teleporting then it can always be made teleporting with this
prescription. We derive the most general restrictions on improvement of such
noisy states assuming that the damping parameters being different for both the
qubits. However this curious prescription does not work for the noisy entangled
states generated from (| \Psi ^{\pm}> =\frac{1}{\sqrt{2}}(| 01> \pm | 10>)).
This shows that an apriori knowledge of the noisy channel might be helpful to
decide which Bell state needs to be shared between Alice and Bob. \emph{}Comment: Latex, 18 pages: Revised version with a new result. Submitted to PR
A classical analogue of entanglement
We show that quantum entanglement has a very close classical analogue, namely
secret classical correlations. The fundamental analogy stems from the behavior
of quantum entanglement under local operations and classical communication and
the behavior of secret correlations under local operations and public
communication. A large number of derived analogies follow. In particular
teleportation is analogous to the one-time-pad, the concept of ``pure state''
exists in the classical domain, entanglement concentration and dilution are
essentially classical secrecy protocols, and single copy entanglement
manipulations have such a close classical analog that the majorization results
are reproduced in the classical setting. This analogy allows one to import
questions from the quantum domain into the classical one, and vice-versa,
helping to get a better understanding of both. Also, by identifying classical
aspects of quantum entanglement it allows one to identify those aspects of
entanglement which are uniquely quantum mechanical.Comment: 13 pages, references update
A Measure of Stregth of an Unextendible Product Basis
A notion of strength of an unextendible product basis is introduced and a
quantitative measure for it is suggested with a view to providing an indirect
measure for the bound entanglement of formation of the bound entangled mixed
state associated with an unextendible product basis.Comment: 4 pages, Latex, 1 figure, remarks, criticisms welcom
Intercept-resend attacks in the Bennett-Brassard 1984 quantum key distribution protocol with weak coherent pulses
Unconditional security proofs of the Bennett-Brassard protocol of quantum key
distribution have been obtained recently. These proofs cover also practical
implementations that utilize weak coherent pulses in the four signal
polarizations. Proven secure rates leave open the possibility that new proofs
or new public discussion protocols obtain larger rates over increased distance.
In this paper we investigate limits to error rate and signal losses that can be
tolerated by future protocols and proofs.Comment: 11 pages, 3 figures. Version accepted for publication in Phys. Rev.
Comparing primary prevention with secondary prevention to explain decreasing Coronary Heart Disease death rates in Ireland, 1985-2000.
BACKGROUND: To investigate whether primary prevention might be more favourable than secondary prevention (risk factor reduction in patients with coronary heart disease(CHD)).
METHODS: The cell-based IMPACT CHD mortality model was used to integrate data for Ireland describing CHD patient numbers, uptake of specific treatments, trends in major cardiovascular risk factors, and the mortality benefits of these specific risk factor changes in CHD patients and in healthy people without recognised CHD.
RESULTS: Between 1985 and 2000, approximately 2,530 fewer deaths were attributable to reductions in the three major risk factors in Ireland. Overall smoking prevalence declined by 14% between 1985 and 2000, resulting in about 685 fewer deaths (minimum estimate 330, maximum estimate 1,285) attributable to smoking cessation: about 275 in healthy people and 410 in known CHD patients. Population total cholesterol concentrations fell by 4.6%, resulting in approximately 1,300 (minimum estimate 1,115, maximum estimate 1,660) fewer deaths attributable to dietary changes(1,185 in healthy people and 115 in CHD patients) plus 305 fewer deaths attributable to statin treatment (45 in people without CHD and 260 in CHD patients). Mean population diastolic blood pressure fell by 7.2%, resulting in approximately 170 (minimum estimate 105, maximum estimate 300) fewer deaths attributable to secular falls in blood pressure (140 in healthy people and 30 in CHD patients), plus approximately 70 fewer deaths attributable to antihypertensive treatments in people without CHD. Of all the deaths attributable to risk factor falls, some 1,715 (68%) occurred in people without recognized CHD and 815(32%) in CHD patients.
CONCLUSION: Compared with secondary prevention, primary prevention achieved a two-fold larger reduction in CHD deaths. Future national CHD policies should therefore prioritize nationwide interventions to promote healthy diets and reduce smoking
The Parity Bit in Quantum Cryptography
An -bit string is encoded as a sequence of non-orthogonal quantum states.
The parity bit of that -bit string is described by one of two density
matrices, and , both in a Hilbert space of
dimension . In order to derive the parity bit the receiver must
distinguish between the two density matrices, e.g., in terms of optimal mutual
information. In this paper we find the measurement which provides the optimal
mutual information about the parity bit and calculate that information. We
prove that this information decreases exponentially with the length of the
string in the case where the single bit states are almost fully overlapping. We
believe this result will be useful in proving the ultimate security of quantum
crytography in the presence of noise.Comment: 19 pages, RevTe
Irreversibility in asymptotic manipulations of entanglement
We show that the process of entanglement distillation is irreversible by
showing that the entanglement cost of a bound entangled state is finite. Such
irreversibility remains even if extra pure entanglement is loaned to assist the
distillation process.Comment: RevTex, 3 pages, no figures Result on indistillability of PPT states
under pure entanglement catalytic LOCC adde
Distillable entanglement in dimension
Distillable entanglement () is one of the acceptable measures of
entanglement of mixed states. Based on discrimination through local operation
and classical communication, this paper gives for two classes of
orthogonal multipartite maximally entangled states.Comment: 6 page
Can non-private channels transmit quantum information?
We study the power of quantum channels with little or no capacity for private
communication. Because privacy is a necessary condition for quantum
communication, one might expect that such channels would be of little use for
transmitting quantum states. Nevertheless, we find strong evidence that there
are pairs of such channels that, when used together, can transmit far more
quantum information than the sum of their individual private capacities.
Because quantum transmissions are necessarily private, this would imply a large
violation of additivity for the private capacity. Specifically, we present
channels which display either (1) A large joint quantum capacity but very small
individual private capacities or (2) a severe violation of additivity for the
Holevo information.Comment: We both think so. 4 pages and 3 figures explain wh
- …