397 research outputs found
Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities
We analyze the signal processing required for the optimal detection of a
stochastic background of gravitational radiation using laser interferometric
detectors. Starting with basic assumptions about the statistical properties of
a stochastic gravity-wave background, we derive expressions for the optimal
filter function and signal-to-noise ratio for the cross-correlation of the
outputs of two gravity-wave detectors. Sensitivity levels required for
detection are then calculated. Issues related to: (i) calculating the
signal-to-noise ratio for arbitrarily large stochastic backgrounds, (ii)
performing the data analysis in the presence of nonstationary detector noise,
(iii) combining data from multiple detector pairs to increase the sensitivity
of a stochastic background search, (iv) correlating the outputs of 4 or more
detectors, and (v) allowing for the possibility of correlated noise in the
outputs of two detectors are discussed. We briefly describe a computer
simulation which mimics the generation and detection of a simulated stochastic
gravity-wave signal in the presence of simulated detector noise. Numerous
graphs and tables of numerical data for the five major interferometers
(LIGO-WA, LIGO-LA, VIRGO, GEO-600, and TAMA-300) are also given. The treatment
given in this paper should be accessible to both theorists involved in data
analysis and experimentalists involved in detector design and data acquisition.Comment: 81 pages, 30 postscript figures, REVTE
Stereospecific opiate-binding sites occur in coated vesicles
We prepared clathrin-coated vesicles from bovine forebrain utilizing sucrose or deuterium oxide-Ficoll density gradient centrifugation followed by permeation chromatography. Homogeneity was monitored by electron microscopy (EM) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). EM revealed that the predominant (up to 98% of the total) organelles were coated vesicles and empty hexagonal baskets. Diameters of the coated vesicles ranged from 37 to 120 nm with a mean of 65.2 ± 2.2. Upon SDS-PAGE of the coated vesicle fraction, the most prominent band appeared at 180,000 daltons. There were also three additional bands at 10,000, 50,000 and 35,000 daltons, giving the overall pattern characteristic of coated vesicles. Both 0.5 nM tritiated naltrexone and etorphine displayed specific binding to coated vesicles. Naltrexone binding in coated vesicles from gradient fractions was increased 2.5-fold over the original 100,000 x g pellet. An additional 4-fold enrichment in specific binding was observed after permeation chromatography which was concomitant with an increase in the volume density of coated vesicles in electron micrographs. Naltrexone binding was stereospecific and etorphine binding was inhibited by 100 mM NaCl (40%). Both naltrexone and etorphine binding were inhibited by 50 μM guanyl-5'-yl imidodiphosphate (40 to 50%). In summary, purified bovine brain-coated vesicles contained high affinity stereospecific opiate alkaloid-binding sites with characteristic opioid binding properties
Constraining the Littlest Higgs
Little Higgs models offer a new way to address the hierarchy problem, and
give rise to a weakly-coupled Higgs sector. These theories predict the
existence of new states which are necessary to cancel the quadratic divergences
of the Standard Model. The simplest version of these models, the Littlest
Higgs, is based on an non-linear sigma model and predicts that
four new gauge bosons, a weak isosinglet quark, , with , as well as
an isotriplet scalar field exist at the TeV scale. We consider the
contributions of these new states to precision electroweak observables, and
examine their production at the Tevatron. We thoroughly explore the parameter
space of this model and find that small regions are allowed by the precision
data where the model parameters take on their natural values. These regions
are, however, excluded by the Tevatron data. Combined, the direct and indirect
effects of these new states constrain the `decay constant' f\gsim 3.5 TeV and
m_{t'}\gsim 7 TeV. These bounds imply that significant fine-tuning be
present in order for this model to resolve the hierarchy problem.Comment: 31 pgs, 26 figures; bound on t' mass fixed to mt'>2f, conclusions
unchange
Four loop wave function renormalization in the non-abelian Thirring model
We compute the anomalous dimension of the fermion field with N_f flavours in
the fundamental representation of a general Lie colour group in the non-abelian
Thirring model at four loops. The implications on the renormalization of the
two point Green's function through the loss of multiplicative renormalizability
of the model in dimensional regularization due to the appearance of evanescent
four fermi operators are considered at length. We observe the appearance of one
new colour group Casimir, d_F^{abcd} d_F^{abcd}, in the final four loop result
and discuss its consequences for the relation of the Knizhnik-Zamolodchikov
critical exponents in the Wess Zumino Witten Novikov model to the non-abelian
Thirring model. Renormalization scheme changes are also considered to ensure
that the underlying Fierz symmetry broken by dimensional regularization is
restored.Comment: 25 latex pages with 9 postscript figure
A Model for the Stray Light Contamination of the UVCS Instrument on SOHO
We present a detailed model of stray-light suppression in the spectrometer
channels of the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO
spacecraft. The control of diffracted and scattered stray light from the bright
solar disk is one of the most important tasks of a coronagraph. We compute the
fractions of light that diffract past the UVCS external occulter and
non-specularly pass into the spectrometer slit. The diffracted component of the
stray light depends on the finite aperture of the primary mirror and on its
figure. The amount of non-specular scattering depends mainly on the
micro-roughness of the mirror. For reasonable choices of these quantities, the
modeled stray-light fraction agrees well with measurements of stray light made
both in the laboratory and during the UVCS mission. The models were constructed
for the bright H I Lyman alpha emission line, but they are applicable to other
spectral lines as well.Comment: 19 pages, 5 figures, Solar Physics, in pres
Autofeedback scheme for preservation of macroscopic coherence in microwave cavities
We present a scheme for controlling the decoherence of a linear superposition
of two coherent states with opposite phases in a high-Q microwave cavity, based
on the injection of appropriately prepared ``probe'' and ``feedback'' Rydberg
atoms, improving the one presented in [D. Vitali et al., Phys. Rev. Lett. 79,
2442 (1997)]. In the present scheme, the information transmission from the
probe to the feedback atom is directly mediated by a second auxiliary cavity.
The detection efficiency for the probe atom is no longer a critical parameter,
and the decoherence time of the superposition state can be significantly
increased using presently available technology.Comment: revtex, 15 pages, 4 eps figure
Local realizations of contact interactions in two- and three-body problems
Mathematically rigorous theory of the two-body contact interaction in three
dimension is reviewed. Local potential realizations of this proper contact
interaction are given in terms of Poschl-Teller, exponential and square-well
potentials. Three body calculation is carried out for the halo nucleus 11Li
using adequately represented contact interaction.Comment: submitted to Phys. Rev.
Cosmic coincidence problem and variable constants of physics
The standard model of cosmology is investigated using time dependent
cosmological constant and Newton's gravitational constant . The
total energy content is described by the modified Chaplygin gas equation of
state. It is found that the time dependent constants coupled with the modified
Chaplygin gas interpolate between the earlier matter to the later dark energy
dominated phase of the universe. We also achieve a convergence of parameter
, with minute fluctuations, showing an evolving . Thus our
model fairly alleviates the cosmic coincidence problem which demands
at present time.Comment: 27 pages, 15 figure
Cumulants and the moment algebra: tools for analysing weak measurements
Recently it has been shown that cumulants significantly simplify the analysis
of multipartite weak measurements. Here we consider the mathematical structure
that underlies this, and find that it can be formulated in terms of what we
call the moment algebra. Apart from resulting in simpler proofs, the
flexibility of this structure allows generalizations of the original results to
a number of weak measurement scenarios, including one where the weakly
interacting pointers reach thermal equilibrium with the probed system.Comment: Journal reference added, minor correction
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
- …