1,771 research outputs found

    Quantum complexities of ordered searching, sorting, and element distinctness

    Full text link
    We consider the quantum complexities of the following three problems: searching an ordered list, sorting an un-ordered list, and deciding whether the numbers in a list are all distinct. Letting N be the number of elements in the input list, we prove a lower bound of \frac{1}{\pi}(\ln(N)-1) accesses to the list elements for ordered searching, a lower bound of \Omega(N\log{N}) binary comparisons for sorting, and a lower bound of \Omega(\sqrt{N}\log{N}) binary comparisons for element distinctness. The previously best known lower bounds are {1/12}\log_2(N) - O(1) due to Ambainis, \Omega(N), and \Omega(\sqrt{N}), respectively. Our proofs are based on a weighted all-pairs inner product argument. In addition to our lower bound results, we give a quantum algorithm for ordered searching using roughly 0.631 \log_2(N) oracle accesses. Our algorithm uses a quantum routine for traversing through a binary search tree faster than classically, and it is of a nature very different from a faster algorithm due to Farhi, Goldstone, Gutmann, and Sipser.Comment: This new version contains new results. To appear at ICALP '01. Some of the results have previously been presented at QIP '01. This paper subsumes the papers quant-ph/0009091 and quant-ph/000903

    Scaling Property of the global string in the radiation dominated universe

    Get PDF
    We investigate the evolution of the global string network in the radiation dominated universe by use of numerical simulations in 3+1 dimensions. We find that the global string network settles down to the scaling regime where the energy density of global strings, ρs\rho_{s}, is given by ρs=ΟΌ/t2\rho_{s} = \xi \mu / t^2 with ÎŒ\mu the string tension per unit length and the scaling parameter, Ο∌(0.9−1.3)\xi \sim (0.9-1.3), irrespective of the cosmic time. We also find that the loop distribution function can be fitted with that predicted by the so-called one scale model. Concretely, the number density, nl(t)n_{l}(t), of the loop with the length, ll, is given by nl(t)=Îœ/[t3/2(l+Îșt)5/2]n_{l}(t) = \nu/[t^{3/2} (l + \kappa t)^{5/2}] where Μ∌0.0865\nu \sim 0.0865 and Îș\kappa is related with the Nambu-Goldstone(NG) boson radiation power from global strings, PP, as P=ÎșÎŒP = \kappa \mu with Îș∌0.535\kappa \sim 0.535. Therefore, the loop production function also scales and the typical scale of produced loops is nearly the horizon distance. Thus, the evolution of the global string network in the radiation dominated universe can be well described by the one scale model in contrast with that of the local string network.Comment: 18 pages, 9 figures, to appear in Phys. Rev.

    Quantum Cryptography Based on the Time--Energy Uncertainty Relation

    Get PDF
    A new cryptosystem based on the fundamental time--energy uncertainty relation is proposed. Such a cryptosystem can be implemented with both correlated photon pairs and single photon states.Comment: 5 pages, LaTex, no figure

    Evolution of a global string network in a matter dominated universe

    Get PDF
    We evolve the network of global strings in the matter-dominated universe by means of numerical simulations. The existence of the scaling solution is confirmed as in the radiation-dominated universe but the scaling parameter Ο\xi takes a slightly smaller value, Ο≃0.6±0.1\xi \simeq 0.6 \pm 0.1, which is defined as Ο=ρst2/ÎŒ\xi = \rho_{s} t^{2} / \mu with ρs\rho_{s} the energy density of global strings and ÎŒ\mu the string tension per unit length. The change of Ο\xi from the radiation to the matter-dominated universe is consistent with that obtained by Albrecht and Turok by use of the one-scale model. We also study the loop distribution function and find that it can be well fitted with that predicted by the one-scale model, where the number density nl(t)n_{l}(t) of the loop with the length ll is given by nl(t)=Îœ/[t2(l+Îșt)2]n_{l}(t) = \nu/[t^2 (l + \kappa t)^2] with Μ∌0.040\nu \sim 0.040 and Îș∌0.48\kappa \sim 0.48. Thus, the evolution of the global string network in the matter-dominated universe can be well described by the one-scale model as in the radiation-dominated universe.Comment: 10 pages, 5 figure

    Microcurrent stimulation in the treatment of dry and wet macular degeneration

    Get PDF
    Purpose: To determine the safety and efficacy of the application of transcutaneous (transpalpebral) microcurrent stimulation to slow progression of dry and wet macular degeneration or improve vision in dry and wet macular degeneration. Methods: Seventeen patients aged between 67 and 95 years with an average age of 83 years were selected to participate in the study over a period of 3 months in two eye care centers. There were 25 eyes with dry age-related macular degeneration (DAMD) and six eyes with wet age-related macular degeneration (WAMD). Frequency-specific microcurrent stimulation was applied in a transpalpebral manner, using two programmable dual channel microcurrent units delivering pulsed microcurrent at 150 ÎŒA for 35 minutes once a week. The frequency pairs selected were based on targeting tissues, which are typically affected by the disease combined with frequencies that target disease processes. Early Treatment Diabetic Retinopathy Study or Snellen visual acuity (VA) was measured before and after each treatment session. All treatment was administered in a clinical setting. Results: Significant increases were seen in VA in DAMD (P=0.012, Wilcoxon one-sample test), but in WAMD, improvements did not reach statistical significance (P=0.059). In DAMD eyes, twice as many patients showed increase in VA (52%) compared to those showing dete-rioration (26%), with improvements being often sizeable, whereas deteriorations were usually very slight. In WAMD eyes, five of six (83%) patients showed an increase and none showed deterioration. Conclusion: The substantial changes observed over this period, combined with continued improvement for patients who continued treatment once a month, are encouraging for future studies. The changes observed indicate the potential efficacy of microcurrent to delay degeneration and possibly improve age-related macular degeneration, both wet and dry. However, this study has no control arm, so results should be treated with caution. Randomized double-blind controlled studies are needed to determine long-term effects

    Measurement in Economics and Social Science

    Get PDF
    The paper discusses measurement, primarily in economics, from both analytical and historical perspectives. The historical section traces the commitment to ordinalism on the part of economic theorists from the doctrinal disputes between classical economics and marginalism, through the struggle of orthodox economics against socialism down to the cold-war alliance between mathematical social science and anti-communist ideology. In economics the commitment to ordinalism led to the separation of theory from the quantitative measures that are computed in practice: price and quantity indexes, consumer surplus and real national product. The commitment to ordinality entered political science, via Arrow’s ‘impossibility theorem’, effectively merging it with economics, and ensuring its sterility. How can a field that has as its central result the impossibility of democracy contribute to the design of democratic institutions? The analytical part of the paper deals with the quantitative measures mentioned above. I begin with the conceptual clarification that what these measures try to achieve is a restoration of the money metric that is lost when prices are variable. I conclude that there is only one measure that can be embedded in a satisfactory economic theory, free from unreasonable restrictions. It is the Törnqvist index as an approximation to its theoretical counterpart the Divisia index. The statistical agencies have at various times produced different measures for real national product and its components, as well as related concepts. I argue that all of these are flawed and that a single deflator should be used for the aggregate and the components. Ideally this should be a chained Törnqvist price index defined on aggregate consumption. The social sciences are split. The economic approach is abstract, focused on the assumption of rational and informed behavior, and tends to the political right. The sociological approach is empirical, stresses the non-rational aspects of human behavior and tends to the political left. I argue that the split is due to the fact that the empirical and theoretical traditions were never joined in the social sciences as they were in the natural sciences. I also argue that measurement can potentially help in healing this split

    Contribution of Long Wavelength Gravitational Waves to the CMB Anisotropy

    Full text link
    We present an in depth discussion of the production of gravitational waves from an inflationary phase that could have occurred in the early universe, giving derivations for the resulting spectrum and energy density. We also consider the large-scale anisotropy in the cosmic microwave background radiation coming from these waves. Assuming that the observed quadrupole anisotropy comes mostly from gravitational waves (consistent with the predictions of a flat spectrum of scalar density perturbations and the measured dipole anisotropy) we describe in detail how to derive a value for the scale of inflation of (1.5−5)×1016(1.5-5)\times 10^{16}GeV, which is at a particularly interesting scale for particle physics. This upper limit corresponds to a 95\% confidence level upper limit on the scale of inflation assuming only that the quadrupole anisotropy from gravitational waves is not cancelled by another source. Direct detection of gravitational waves produced by inflation near this scale will have to wait for the next generation of detectors.Comment: (LaTeX 16 pages), 2 figures not included, YCTP-P16-9

    Observation of Fluctuation-Dissipation-Theorem Violations in a Structural Glass

    Full text link
    The fluctuation-dissipation theorem (FDT), connecting dielectric susceptibility and polarization noise was studied in glycerol below its glass transition temperature Tg. Weak FDT violations were observed after a quench from just above to just below Tg, for frequencies above the alpha peak. Violations persisted up to 10^5 times the thermal equilibration time of the configurational degrees of freedom under study, but comparable to the average relaxation time of the material. These results suggest that excess energy flows from slower to faster relaxing modes.Comment: Improved discussion; final version to appear in Phys. Rev. Lett. 4 pages, 5 PS figures, RevTe

    Jumping without Using Legs: The Jump of the Click-Beetles (Elateridae) Is Morphologically Constrained

    Get PDF
    To return to their feet, inverted click-beetles (Elateridae) jump without using their legs. When a beetle is resting on its dorsal side, a hinge mechanism is locked to store elastic energy in the body and releases it abruptly to launch the beetle into the air. While the functional morphology of the jumping mechanism is well known, the level of control that the beetle has over this jumping technique and the mechanical constraints governing the jumps are not entirely clear. Here we show that while body rotations in air are highly variable, the jumps are morphologically constrained to a constant “takeoff” angle (79.9°±1.56°, n = 9 beetles) that directs 98% of the jumping force vertically against gravity. A physical-mathematical model of the jumping action, combined with measurements from live beetle, imply that the beetle may control the speed at takeoff but not the jumping angle. In addition, the model shows that very subtle changes in the exact point of contact with the ground can explain the vigorous rotations of the body seen while the beetle is airborne. These findings suggest that the evolution of this unique non-legged jumping mechanism resulted in a jumping technique that is capable of launching the body high into the air but it is too constrained and unstable to allow control of body orientation at landing

    A panchromatic view of PKS 0558-504: an ideal laboratory to study the disk-jet link

    Full text link
    PKS 0558-504 is the brightest radio-loud Narrow-Line Seyfert 1 galaxy at X-ray energies. Here we present results from the radio, optical, UV, and X-ray bands obtained with Swift, XMM, and ATCA during a 10-day monitoring campaign in September 2008. The simultaneous coverage at several wavelengths makes it possible to investigate in detail the broadband spectral energy distribution (SED) and the energetic of this source. The main results can be summarized as follows. The ATCA reveals the presence of an extended radio emission in PKS 0558-504 with two lobe-like structures at ~7" from the bright central source. The extended radio structure and the low value of the radio-loudness similar to radio-quiet Seyfert galaxies coupled with constraints from higher energy bands argue against a jet-dominated emission. The study of the SED, which is dominated by a nearly constant optical-UV emission, supports the conclusion that PKS 0558-504 is accreting at super-Eddington rate. This conclusion was reached assuming M_BH=2.5e8 M_sun, which was obtained with a new scaling method based on X-ray spectral variability results. A comparison between the accretion luminosity and the kinetic power associated with the jet suggests that in this source the accretion power dominates in agreement with the results obtained from Radiation-MHD simulations of Galactic black holes (GBHs) accreting at the Eddington rate. The combined findings from this panchromatic investigation strongly suggest that PKS 0558-504 is a large-scale analog of GBHs in their highly accreting intermediate state. Importantly, PKS 0558-504 may also be the prototype of the parent population of the very radio-loud NLS1s recently detected at gamma-ray energies.Comment: 11 pages, 5 figures, 3 tables, accepted for publication in Ap
    • 

    corecore